
ObjectGlobe:
Ubiquitous Query Processing on the Internet?

R. Braumandl, M. Keidl, A. Kemper, D. Kossmann??, A. Kreutz, S. Seltzsam, K. Stocker

Universität Passau, Lehrstuhl f¨ur Informatik, 94030 Passau, Germany; e-mail:<lastname>@db.fmi.uni-passau.de

Abstract We present the design of ObjectGlobe, a
distributed and open query processor for Internet data
sources. Today, data is published on the Internet via Web
servers which have, if at all, very localized query pro-
cessing capabilities. The goal of the ObjectGlobe project
is to establish an open market place in whichdata and
query processing capabilitiescan be distributed and used
by any kind of Internet application. Furthermore, Object-
Globe integratescycle providers(i.e., machines) which
carry out query processing operators. The overall pic-
ture is to make it possible to execute a query with—
in principle—unrelated query operators, cycle providers
and data sources. Such an infrastructure can serve as en-
abling technology for scalable e-commerce applications,
e.g., B2B and B2C market places, to be able to integrate
data and data processing operations of a large number of
participants. One of the main challenges in the design of
such an open system is to ensure privacy and security. We
discuss the ObjectGlobe security requirements, show how
basic components such as the optimizer and runtime sys-
tem need to be extended, and present the results of per-
formance experiments that assess the additional cost for
secure distributed query processing. Another challenge is
quality of service management so that users can constrain
the costs and running times of their queries.

Key words Distributed Query Processing – Query Op-
timization – Open Systems – Cycle-, Function- and Data
Provider – Security – Privacy – Quality of Service

? This research is supported by the German National Research
Foundation under contract DFG Ke 401/7-1 and the German Is-
reali Foundation (GIF).
?? Current address: Technische Universit¨at München, Insti-
tut für Informatik, 81667 M¨unchen, Germany; e-mail: koss-
mann@in.tum.de

1 Introduction

The World Wide Web has made it very easy and cheap for
people and organizations all over the world to exchange
data. Today, virtually everybody can publish a document
by generatingHTML(or XML) and placing it on some Web
server; likewise, it is more or less standard to make data
stored in relational (or other) databases publicly available
on the Web by establishing form-based interfaces and by
using CGI scripts or Servlets. WWW clients can retrieve
individual documents by a simple “click” and they can
get specific information from a database (behind the Web
server) by filling out a form. In other words, WWW clients
today can easily execute “point queries” (i.e., given URL,
return document) and they can execute queries that can be
handled by a single database behind a Web server.

The goal of the ObjectGlobe project is twofold. First,
we would like to create an infrastructure that makes it as
easy to distributequery processing capabilities(i.e., query
operators) as it is to publish data and documents on the
Web today. Second, we would like to enable clients to exe-
cute complex queries which involve the execution of oper-
ators from multiple providers at different sites and the re-
trieval of data and documents from multiple data sources.
In contrast to Applets, all query operators should be able
to interact in a distributed query plan and it should be pos-
sible to move query operators to arbitrary sites, including
sites which arenearthe data. Thus, distributed query plans
can be composed of arbitrary query operators obtained
from various function providers; the only requirement we
make is that all query operators must be written in Java
and conform to the secure interfaces of ObjectGlobe.

We believe that our ObjectGlobe system can help to
develop new application scenarios and new ways in which
people and organizations interact on the Internet. An orga-
nization, for instance, could outsource all or part of its data
processing to specialized providers on the Internet. As an-
other example, WWW clients canquerythe Web and carry



2 R. Braumandl et al.

out different operations on different data sources. Provi-
ders could charge for data and new query operators. A
data provider (e.g., a car dealer or a real estate broker)
could also be interested in participating in ObjectGlobe
in order to supply its product catalog for free. Open, dis-
tributed query processing, as in ObjectGlobe, is an essen-
tial enabling technology for scalable Internet applications,
such as business-to-business (B2B) e-commerce systems
like SAP’s electronic marketplace “mySAP.com” [SAP99]
which comprises hundreds of companies. One of the key
challenges is to facilitate query processing over the vari-
ous heterogeneous data sources in order to build integrated
product catalogs, match product availability with demand
forecasts, or perform price comparisons for procurement.

In some sense, the ObjectGlobe system can be seen as
a distributed query processor. ObjectGlobe has a lookup
service (i.e., a meta-data repository) which registers all
data sources, operators, and machines on which queries
can be executed. Every time a new provider joins or leaves
an ObjectGlobe federation the corresponding meta-data is
added to or removed from the respective meta-data repos-
itory. The lookup service is used by the ObjectGlobe op-
timizer in order to discover relevant resources for a query.
The optimizer generates a query evaluation plan with the
goal to execute the query in a way, which fulfills the user’s
quality constraints. This plan is then initiated and exe-
cuted by the distributed execution engines (i.e., the Ob-
jectGlobe servers). The design of all of these components
has been addressed in previous work. Jini, for example, has
a related lookup service [Wal99], and projects like Mari-
posa [SAL+96], Garlic [HKWY97] or AmosII [JR99] (to
name just a few) have recently studied wide-area dis-
tributed query processing. What makes the ObjectGlobe
system special is its “brutal” openness that allows to ex-
ecute a query with—in principle—unrelated query opera-
tors, cycle providers and data sources. This transparent ad-
hoc integration of operators and functions is a demanding
task for query optimization which must take into account
the logical and physical properties of these operations. One
particular issue that needs to be addressed in this kind of
system is “security” and how to protect data (and other re-
sources) from unauthorized access. Another challenge is
to ensure scalability in the number of cycle and data pro-
viders. On behalf of the users, this means that they must
be able to constrain the execution of their queries in such
a system regarding monetary costs, execution time and the
amount of data involved in the execution. In other words,
quality of service management is necessary so that the be-
havior of the system becomes predictable and the invest-
ment of a user to execute a query is guaranteed.

In this paper, we will describe the approaches we have
chosen to address all these challenges and give some ini-
tial performance results obtained using our system. The
development of techniques for “schema integration” in a

distributed and heterogeneous environment is not the tar-
get of our work because this has been addressed in other
work (e.g., [SL90] or [JR99]). In particular, we do not re-
port on work on ontologies [BCV99]. We assume that all
data is in a standard format (e.g., relational or XML) or
wrapped [RS97]. Furthermore, we assume that there is a
meta-schema that can be used to describe all relevant prop-
erties of all services; for example, the ObjectGlobe meta-
schema specifies that data sources are described among
others by the set ofthemes(i.e., collections) they provide,
a set of access methods or wrappers to read theses collec-
tions and statistics about value distribution and the cost to
read these collections. How to (semi-) automatically ex-
tract all this information is beyond the scope of this paper.
The emergence of XML, however, has initiated a number
of standardization approaches for various businesses. For
instance, global schemas for the real estate and financial
sectors have been proposed in [Pet99] and [Gur00], re-
spectively. Based on such standards, ObjectGlobe can very
well be used in order to implement the remaining infras-
tructure (i.e., secure and reliable query processing).

Although “selling” services is one of the main motiva-
tions for our project, the system does not require a partic-
ular business model; many different business models can
be implemented on top of ObjectGlobe. Devising specific
business models for data processing on the Internet is also
beyond the scope of this paper.

The remainder of this paper is structured as follows:
Section 2 gives an overview of the ObjectGlobe system
and compares it with other system architectures. Sections 3
and 4 describe the basic components of the system. Sec-
tion 5 discusses security concerns in different scenarios
and shows the advantages of implementing an electronic
marketplace on top of an ObjectGlobe system. Section 6
contains the results of some initial performance experi-
ments conducted with ObjectGlobe on the Internet. Sec-
tion 7 concludes this paper.

2 Overview of the ObjectGlobe System

The goal of the ObjectGlobe project is to distribute pow-
erful query processing capabilities (including those found
in traditional database systems) across the Internet. The
idea is to create an open market place for three kinds of
suppliers:data providerssupply data,function providers
offer query operators to process the data, andcycle provi-
dersare contracted to execute query operators. Of course,
a single site (even a single machine) can comprise all three
services, i.e., act as data-, function-, and cycle-provider.
In fact, we expect that most data and function providers
will also act as cycle providers. ObjectGlobe enables ap-
plications to execute complex queries which involve the
execution of operators from multiple function providers at
different sites (cycle providers) and the retrieval of data



ObjectGlobe: Ubiquitous Query Processing on the Internet 3

lookup
service

optimize execute
XML

plugparse/lookup
XML

query

XML

res-list

resources
XMLsearch

query
plan

query
result

Fig. 1 Processing a Query in ObjectGlobe

and documents from multiple data sources. In this section,
we will outline how such queries are processed, give an
example, and discuss the security requirements of the sys-
tem.

2.1 Query Processing in ObjectGlobe

Processing a query in ObjectGlobe involves four major
steps (Figure 1):

1. Lookup: In this phase, the ObjectGlobe lookup service
is queried to find relevant data sources, cycle providers,
and query operators that might be useful to execute the
query. In addition, the lookup service provides the au-
thorization data—mirrored and integrated from the in-
dividual providers—to determine what resources may
be accessed by the user who initiates the query and
what other restrictions apply for processing the query.

2. Optimize: The information obtained from the lookup
service, is used by a quality-aware query optimizer to
compile a valid (as far as user privileges are concerned)
query execution plan, which is believed to fulfill the
users’ quality constraints. This plan is annotated with
site information indicating on which cycle provider
each operator is executed and from which function
provider the external query operators involved in the
plan are loaded.

3. Plug: The generated plan is distributed to the cycle pro-
viders and the external query operators are loaded and
instantiated at each cycle provider. Furthermore, the
communication paths (i.e., sockets) are established.

4. Execute: The plan is executed following an iterator
model [Gra93]. In addition to theexternalquery oper-
ators provided by function providers, ObjectGlobe has
built-in query operators for selection, projection, join,
union, nesting, unnesting, and sending and receiving
data. If necessary, communication is encrypted and au-
thenticated. Furthermore, the execution of the plan is
monitored in order to detect failures, look for alterna-
tives, and possibly halt the execution of a plan.

The whole system is written in Java for two reasons1. First,
Java isportableso that ObjectGlobe can be installed with

1 Currently, the optimizer is written in C++, but we are plan-
ning to rewrite it in Java.

very little effort; in particular, cycle providers which need
to install the ObjectGlobe core functionality can very eas-
ily join an ObjectGlobe system. The only requirement is
that a site runs the ObjectGlobe server on a Java virtual
machine. Second, Java provides secure extensibility. Al-
though many people complain about the execution speed
of Java programs, we noticed that by avoiding some pit-
falls in the Java I/O library the execution speed of the Java
virtual machine is no bottleneck in wide area distributed
systems. Like ObjectGlobe itself, external query operators
are written in Java: they are loaded on demand (from func-
tion providers), and they are executed at cycle providers in
their own Java “sandbox” (more details in Section 4). Just
like data and cycle providers, function providers and their
external query operators must be registered in the lookup
service before they can be used.

ObjectGlobe supports a nested relational data model;
this way, relational, object-relational, andXML data
sources can easily be integrated. Other data formats (e.g.,
HTML), however, can be integrated by the use of wrap-
pers that transform the data into the required nested re-
lational format; wrappers are treated by the system as ex-
ternal query operators. As shown in Figure 1,XMLis used
as a data exchange format between the individual Object-
Globe components. Part of the ObjectGlobe philosophy is
that the individual ObjectGlobe components can be used
separately;XMLis used so that the output of every compo-
nent can be easily visualized and modified. For example,
users can browse through the lookup service in order to
find interesting functions which they might want to use in
the query. Furthermore, a user can look at and change the
plan generated by the optimizer.

2.2 Example Plans

To illustrate query processing in ObjectGlobe, let us con-
sider the example shown in Figure 2—the corresponding
query plan is sketched in Figure 3. The realXMLplan is
given in Appendix A. In this example, there are two data
providers,A andB, and one function provider. We assume
that the data providers also operate as cycle providers so
that the ObjectGlobe system is installed on the machines
of A and B. Furthermore, the client can act as a cycle



4 R. Braumandl et al.

�
�
�
�

�
�
�
�

lo
ad

 f
un

ct
io

ndata provider A data provider B

Client
ObjectGlobe
Query Engine

ObjectGlobe
Query Engine

ObjectGlobe
Query Engine

FctProv

recv recv

thumbnail
wrap S

scan scan

T

send

�

wrap S

�

R S

display

send

thumbnail

Fig. 2 Distributed Query Processing with ObjectGlobe

display

http://www.FctProv.com

�
cycle-provider=alpha.A.com

scan
partition=R

wrap S
cycle-provider=alpha.A.com

codebase=

cycle-provider=·

http://www.FctProv.com

thumbnail

scan

cycle-provider=beta.B.com

codebase=

cycle-provider=beta.B.com

partition=T

�

cycle-provider=client

cycle-provider=client

Fig. 3 Annotated Query Execution Plan

provider in this example. Data providerA supplies two
data collections, a relational tableR and some other col-
lectionS which needs to be transformed (i.e., wrapped) for
query processing. Data providerB has a (nested) relational
tableT . The function provider supplies two relevant query
operators: a wrapper (wrap S) to transformS into nested
relational format and a compression algorithm (thumbnail)
to apply on an image attribute ofT .

Figure 3 shows the most important annotations—
in particular, thecycle-provider, partition, andcodebase
annotations—of the query plan. Thecycle-provideranno-
tation of an operator indicates at which machine the op-
erator is executed; e.g., the final join and thedisplayop-
erators are executed at the client. Thepartition annotation
of a scaniterator indicates which collection is to be read.
The codebaseannotation indicates from which function
provider an external query operator is loaded.scan, dis-
play, and thejoins are built-in operators so that they do
not have acodebaseannotation.

Although the example above is rather small (in order
to be illustrative) we expect ObjectGlobe systems to com-
prise a large number of cycle providers and far more data
providers, with several of them contributing data to a spe-
cific theme. Figure 4 shows the structure of an example
query which extracts information from a number of online
databases that belong to different real estate brokers. The
query uses a user-defined nearest neighbor operator (called
nn 10 in the figure) loaded from a function provider that is
specialized on real estate data. The nearest neighbor log-
ical operator is transitive and reflexive and hence allows

us to perform the search for the ten nearest neighbors of a
user-defined feature vector by first computing the ten near-
est neighbors at every data provider and then combining
these results for computing the ten nearest neighbors of
the whole real estate data set. The Union operator could
be carried out by one of the cycle providers that carry
out the low-levelnn 10 operations or by a dedicated cy-
cle provider in order to increase (pipelined) parallelism.
Pure, dedicated cycle providers are also necessary in this
example if one of the real estate data providers is not ca-
pable (e.g., not enough main memory) or not willing (e.g.,
for security reasons) to serve as a cycle provider.

2.3 Quality of Service (QoS)

As seen in the real estate example query, query execution
in ObjectGlobe can involve a large number of different
function, cycle and data providers. A traditional optimizer
produces a plan that reads all the relevant data (i.e., consid-
ers all real-estate data providers). Therefore, the plan pro-
duced by a traditional optimizer will consume much more
time and cost than an ObjectGlobe user is willing to spend.
In such an open query processing system it is essential that
a user can specify quality constraints on the execution it-
self. These constraints can be separated in three different
dimensions:

Result: There are several important properties of a query
result a user should be able to specify. For example,
a user may want to restrict the size of the result set
returned by his/her query in the form of a lower or an



ObjectGlobe: Ubiquitous Query Processing on the Internet 5

scanscan scan

data prov. Zdata prov. Bdata prov. A

FctProv

nn 10nn 10nn 10

∪

nn 10

real estatereal estate real estate

nn 10

Fig. 4 Parallel Execution in ObjectGlobe

data prov. Zdata prov. Bdata prov. A

real estate

∪

nn 10

real estate real estate

Fig. 5 Execution in a Middleware System

upper bound (an upper bound corresponds to a stop
after query [CK98]). Constraints on the amount of data
used for answering the query (e.g., at least 50% of the
data registered for the theme “real estate” should be
used for a specific query) and its freshness (e.g., the
last update should have happened within the last day)
can be used to get results which are based on a current
and sufficiently large subset of the available data.

Cost: Since providers can charge for their services in our
scenario, a user should be able to specify an upper
bound for the respective consumption by a query.

Time: The response time is another important quality pa-
rameter of an interactive query execution. A user can
be interested first, in a fast production of the first an-
swer tuples and second, in a fast overall execution of
the query. A fast production of the first tuples can be
important so that the user can look at these tuples while
the remainder is computed in the background.

In many cases not all quality parameters will be interest-
ing. As in real-time systems some constraints could be
strict (or hard) and others could be soft and handled in a
relaxed way.

An overview of processing a query in the context of
our QoS management is depicted in Figure 6. The starting
point for query processing in our system is given by the de-
scription of the query itself, the QoS constraints for it and
statistics about the resources (providers and communica-
tion links). As shown in the figure, QoS constraints will be
treated during all the phases of query processing:

– The optimizer which generates the query evaluation
plan (QEP), looks for data providers which will con-
tribute enough and sufficiently current data so that
the constraints regarding completeness, cardinality and
freshness are fulfilled.

– During optimization we estimate the quality parame-
ters of all enumerated sub-plans and plans. Only a plan
which fulfills all constraints is executed and its plan de-
scription will be annotated with the quality estimations
and resource requirements for every sub-plan. Addi-
tionally, if the optimizer can find equivalent alterna-

tives for resources used in the query evaluation plan,
these are also annotated in the plan. It should be noted
here that the cardinality is estimated by the normal se-
lectivity estimation mechanisms of the optimizer, for
example, by the use of histograms.

– During the plug phase, sub-plans are distributed to cy-
cle providers, functions are loaded from function pro-
viders and connections to data providers are estab-
lished. When a sub-plan of a query uses the services
of a specific provider, it is checked, if the resource re-
quirements resulting from the quality constraints for
that sub-plan can actually be satisfied by this provider.
For instance, the load of a cycle provider is checked be-
fore the execution of a sub-plan is started. If the load
is too heavy, the sub-plan is demoted to another cycle
provider or the query is aborted. Other actions admis-
sion control might carry out are to refine the priorities
of queries or, in extreme cases, to call the optimizer in
order to re-optimize a (sub-) plan [IEE00].

– During query execution, estimation errors by the op-
timizer and fluctuations regarding resource availabil-
ity for, e.g., CPU time or network bandwidth jeopar-
dize the constraints on the quality parameters. There-
fore, a monitoring component traces the current status
of these parameters for every relevant sub-plan of the
query. If this component detects a potential violation
of the quality constraints for a sub-plan, it first tries to
adapt the sub-plan so that it will meet its constraints
again, or if this is not possible, it will abort the execu-
tion of this sub-plan. The plan adaptations during the
instantiation phase can be performed rather easily, be-
cause the plan is not instantiated yet. The adaptations
for the execution phase have to conserve the work al-
ready done by the plan until the adaptation was trig-
gered. Thus, these adaptations are more complex than
those for the instantiation phase.

In summary, the optimizer first generates a query evalua-
tion plan whose estimated quality parameters are believed
to fulfill the user-specified quality constraints of the query.
For every sub-plan the optimizer states the minimum qual-



6 R. Braumandl et al.

ity constraints it must obey in order to fulfill the overall
quality estimations of the chosen plan and the resource re-
quirements which are believed to be necessary to produce
these quality constraints. If, during the plug phase, the re-
source requirements cannot be satisfied with the available
resources, the plan is adapted or aborted. The QoS man-
agement reacts in the same way, if during query execution
the monitoring component forecasts an eventual violation
of the QoS constraints.

2.4 Privacy and Security Requirements in ObjectGlobe

Safety is one of the crucial issues in an open and dis-
tributed system like ObjectGlobe. ObjectGlobe provides
the infrastructure to deal with the following privacy and
security issues:

Protection of Cycle and Data Providers:It has to be en-
sured that the resources of the cycle and data providers
are protected from (possibly malicious) external opera-
tors loaded from unknown function providers. Based on
the Java security model, all external query operators are
therefore executed in a protected area, a so-calledsandbox
(Section 4.4).

Privacy and Confidentiality: Data and function code
that is processed in the ObjectGlobe system is protected
against unauthorized access and manipulation. The com-
munication streams between ObjectGlobe servers are pro-
tected using the well-established secure communication
standards SSL (Secure Sockets Layer) [FKK96] and/or
TLS (Transport Layer Security) [DA99,TLS] for encrypt-
ing and authenticating (digitally signing) messages. Both
protocols can carry out the authentication of ObjectGlobe
communication partners via X.509 certificates [HFPS99,
PKI]. Furthermore, confidential information or function
code is protected from being transferred to untrusted cy-
cle providers by enforcing an authorization scheme on the
flow of data and operator code specified in the site annota-
tions of the query plan.

User Authentication/Anonymity:ObjectGlobe supports
a flexible authentication policy. Users and applications that
only access free and publicly available resources can be
anonymous and no authentication is required. If a user
accesses a resource that charges and accepts electronic
money, then the user can again stay anonymous and the
electronic money is shipped as part of the “plug” step. Au-
thentication is only required for authorization or account-
ing purposes of providers. Cycle providers can also re-
quire authenticated external operators to restrict the func-
tion providers; e.g., to execute only code originating from
trusted sources within the same company or Intranet.

Authorization: Some providers constrain the access or
use of their resources to particular user groups. As already
mentioned, providers can also constrain the information
(function code) flow to ensure that only trusted cycle pro-
viders are used in the query execution plan. In general,
providers apply their own autonomous authorization pol-
icy and control the execution of, say, query operators at
their site themselves. In order to generate valid query exe-
cution plans and avoid failures at execution time, Object-
Globe must know about these authorization constraints,
which means, that they must be incorporated in its lookup
service.

2.5 Comparison to Other System Architectures

Distributed database systems have been studied since the
late seventies in projects like System R∗, SDD-1, or Dis-
tributed Ingres. A survey of existing distributed query pro-
cessing techniques studied in these projects is given in
[Kos01]. ObjectGlobe shares with all these projects the vi-
sion that a distributed system can be used as easily as a
centralized system (i.e., transparency) and that good per-
formance can be achieved by sophisticated query opti-
mization. The architecture of ObjectGlobe is more general
than that of a traditional system like System R∗. In a tradi-
tional system, every site acts as a data and cycle provider
which executes built-in query operators; obviously, Ob-
jectGlobe supports such a scenario as well. In addition,
ObjectGlobe provides the flexibility to integrate external
operators and a large number of non-database (legacy) data
sources.

Today, external operators and/or legacy data sources
are typically integrated using a middleware architecture;
examples are Garlic [C+95] from IBM, Information Man-
ifold [LRO96], TSIMMIS [PGGMU95], DISCO [TRV98]
or Tukwila [IFF+99]. Again, ObjectGlobe’s architecture is
more flexible, resulting in better performance. Let us see
how our example query shown in Figure 2 would be pro-
cessed in a middleware system. As shown in Figure 7, mid-
dleware systems can only exploit the (limited) query pro-
cessing capabilities that are hard-wired into the (legacy)
data sources. If new operators are needed, such aswrap S
and thumbnail, these operators are executed at a central
middleware site. This is also true for distributed middle-
ware systems like AmosII [JKR99], because the corre-
sponding server processes are restricted to the mediator’s
capabilities and cannot be extended by dynamically loaded
mobile code. This means, that only specific servers, which
can be prepared by a user in advance, can execute his/her
application specific code. In Figure 4 the ObjectGlobe ver-
sion of the nearest neighbor example plan is depicted. In
contrast to the traditional execution plan of middleware
systems as shown in Figure 5 the ObjectGlobe plan, which



ObjectGlobe: Ubiquitous Query Processing on the Internet 7

static plan adaptation

QEP with annotations:
- QoS constraints for subplans
- resource requirements
- resource alternatives

estimation resource
fluctuations

dynamic plan adaptation

errors

Resource statistics

abort abort

Execute

admission control:

PlugOptimize

QoS monitoring:

QoS Constraints

Query

Meta-Data

Lookup

Fig. 6 The Interaction of Query Processing and QoS Management

U
se

r-
D

ef
in

ed
 O

pe
ra

to
rs

Middleware System

data provider Bdata provider A

thumbnail

wrap Sget get

S
R T

wrap S

� thumbnail

�

Fig. 7 Query Evaluation in a centralized Middleware System

uses dynamic operator loading, can exploit parallel execu-
tion of several nearest neighbor operators and causes much
less network traffic. As a result, a middleware system in-
curs high communication costs for shipping the data to the
middleware; i.e., for data shipping [FJK96]. ObjectGlobe
helps reduce such communication costs by allowing to ex-
ecute new and external query operators at or near the data
providers.

Various aspects of the ObjectGlobe project have al-
ready been studied in other projects. The notion of an open
market place in which different providers compete for que-
ries is borrowed from Mariposa [SAL+96]—even though,
ObjectGlobe does not enforce a particular business model
like Mariposa. Mariposa also has some notion of QoS,
but we consider user-defined quality constraints during all
phases of query execution, whereas Mariposa tries to obey
these constraints only during its plan fragmentation step,
which takes place after optimization. We believe, that this
is not sufficient in such an Internet-wide open query pro-
cessor.

Extensibility has been studied in a number of database
projects; e.g., Postgres [SR86], Starburst [HCL+90], or
more recently in Predator [SLR97]. The safe execution of
external functions has been studied in [GMSvE98], but the
scope of that work is too limited for our context.

There has also been a large body of related work
on the integration of services in open distributed object
systems. The most prominent examples are Jini [Wal99]
and CORBA [MZ95]. A related lookup service is HP’s

Chai (Plug & Play) system [HPI99]. The UDDI stan-
dard [UDD00] defines a framework for the management
of meta data about electronic commerce Web services.
Architectures for distributed object systems have been
devised in the SHORE [CDF+94], Ninja [GWBC99],
and AutO [Kri98] projects. The AutO project was also
conducted at the University of Passau and we adopted
many results such as the AutO security model and infras-
tructure for ObjectGlobe. As part of the Ninja project,
a secure distributed directory service has been devel-
oped [CZH+99]. ObjectGlobe’s lookup service also bears
some similarity with X.500 [CCI88] and LDAP direc-
tory services [WHK97]. What makes ObjectGlobe dif-
ferent from all these works is that ObjectGlobe is capa-
ble of complex query processing; that is, a single Object-
Globe query can involve the lookup and execution of many
different services and it requires optimization because of
the large amounts of data that need to be processed. In
this respect, ObjectGlobe’s lookup service is similar to
[MRT98]’s WebSemantics project which uses Web docu-
ments to publish the location of components (wrappers and
data sources) and a uniform query language to locate data
sources based on this meta-data and to access the sources.

In other lines of work, researchers have tried to “query
the Web” using languages like WebSQL [MMM97,KS98];
these efforts, however, only support a navigational style
of access of Web pages. Junglee [GHR97] follows a data
warehousing approach in order to integrate Internet data
for query processing. Furthermore, Web site management



8 R. Braumandl et al.

has been studied in a few recent projects; e.g., Strudel
[FFK+98]. The goal of systems like Strudel, however, is to
improve the services (and manageability) of a single site,
rather than integrating services from multiple sites.

3 Generating Query Plans

In this section, we show how ObjectGlobe produces a plan
for a query. In particular, we describe the ObjectGlobe
lookup servicethat finds relevant resources for a query and
the parser and the optimizer that try to find a good plan to
execute a query. The next section then shows how such a
plan is executed. Currently, ObjectGlobe supports a sub-
set of SQL; ObjectGlobe, however, does support the use
of external functions as part of a query.

3.1 Lookup Service

The lookup service plays the same role in ObjectGlobe
as thecatalogor meta-data managementof a traditional
query processor. Providers are registered before they can
participate in ObjectGlobe. In this way, the information
about available services is incrementally extended as nec-
essary. A similar approach for integrating various business
services in B2B e-commerce has been proposed recently
in the UDDI standardization effort [UDD00].

We expect the registration of providers’ services to
become a similar market as the market for the providers
themselves. So, someone interested in using a service will
register this service; service providers themselves need not
necessarily do this on their own. For example, wrapper de-
velopers are of course interested in registering data sources
for which they have written the corresponding wrappers.
Such an incremental schema enhancement by an autho-
rized user is possible in the ObjectGlobe lookup service
just as in any other database system. This means, that an
ObjectGlobe system is normally not tailored for a specific
data integration problem, but can dynamically be extended
with new data, cycle, and function providers by augment-
ing the meta-data of its lookup service.

The ObjectGlobe parser and optimizer consult the
lookup service in order to find relevant resources to exe-
cute a query and obtain statistics. Furthermore, end users
can use the lookup service to browse through the meta-
data and search for available query capabilities and data
sources for their applications.

3.1.1 ObjectGlobe’s Meta-dataThe ObjectGlobe
lookup service records the following information:

data provider: Each collection of objects stored by a data
provider and theattributes of each collection are
recorded by the lookup service. A collection is either

a materialized partition conforming to ObjectGlobe’s
internal nested relational format or a virtual collection,
i.e., an Internet data source transformed into the col-
lection’s recorded schema by a wrapper. Collections
are associated to a specifictheme. A theme describes a
special concept with a set of terms, calledattributes.
A theme’s attributes can be viewed as the union of
all attributes meaningful for the theme. Queries are
formulated over the themes and their attributes. In-
tegration of a new data source is achieved by regis-
tering it as a new collection and associating it to a
theme. So collections can be seen as horizontal (possi-
bly overlapping) partitions. The attributes provided by
the new collection must be a subset of the attributes de-
fined by the associated theme. Currently ObjectGlobe
uses a non-hierarchical set of themes, but more com-
plex ontologies [BCV99] could be added on top of
our flat theme structure. As an example,www.Ho-
telBook.com and www.HotelGuide.com pro-
vide different collections which are associated to the
themehotel.
Furthermore, the lookup service stores binding pat-
terns of a collection, statistics about a collection like
histograms for estimating the selectivity of simple (i.e.,
non-external) predicates, and information about repli-
cas (i.e., mirrors) of a collection, which could be pro-
vided by some other data provider.

cycle provider: The CPU power, size of main memory,
and temporary disk space of each cycle provider is
recorded. The load on the cycle provider regarding
CPU power and available main memory is stored as a
function of time and likewise we store the latency and
bandwidth information for the network links between
cycle providers.

function provider: The name and signature of each query
operator is recorded. Furthermore, formulas to esti-
mate the consumption of CPU cycles, main memory,
disk space, and the selectivity for each query operator
are kept by the lookup service. These formulas use a
set of parameters which describe the characteristics of
the executing cycle provider (e.g., the available CPU
power/main memory) and the input data for a specific
application of this operator.
ObjectGlobe differentiates betweeniterators like join
or display andtransformerssuch asthumbnail. (In
addition, ObjectGlobe has also special categories for
predicatesandaggregate functions.) Any kind of func-
tion, however, will automatically be wrapped by Ob-
jectGlobe into an iterator so that we ignore these dis-
tinctions in this paper and use the wordsfunctionand
query operatorinterchangeably for the general con-
cept.

authorization information: the lookup service maintains
authorization information which is obtained from the



ObjectGlobe: Ubiquitous Query Processing on the Internet 9

providers and indicates which data may be processed
at which cycle provider and by which query op-
erator. To guarantee privacy and confidentiality, the
providers can also restrict the flow of information
(and code) in order to prevent data (and functions)
from being processed on untrusted cycle providers.
Following the ObjectGlobe authorization model, it
is possible to specify positive and negative autho-
rizations [RBKW91,BJS99]. Also, it is possible to
group collections, functions, and cycle providers into
“authorization classes”—using role-based authoriza-
tion [SCFY96]—in order to reduce the overhead of
maintaining and processing this information in the
lookup service.

Appendix B shows an exampleRDFdocument that can be
used by a data provider to register ahotelcollection. The
meta-data kept in the lookup service can be outdated or in-
complete. It is possible, for instance, that a data provider
revokes the privilege of some cycle providers to process
its data without notifying the lookup service; as a result,
the execution of a query might fail due to an authorization
violation which is detected at execution time. ObjectGlobe
relies on data, function, and cycle providers to notify the
lookup service if important meta-data changes. If a plan
fails due to stale meta-data in the lookup service, all the
relevant meta-data is invalidated so that providers that do
not update their meta-data are eventually excluded from
the ObjectGlobe federation. As an alternative, [CZH+99]
proposes to use atime-to-livescheme; in that scheme, pro-
viders must periodically contact the lookup service if they
want to continue to remain in the federation.

3.1.2 Using the ObjectGlobe Lookup ServiceAs men-
tioned before, data, function, and cycle providers are reg-
istered by generatingRDFdocuments describing their ser-
vices. We useRDFbecause it is very flexible and a WWW
standard for describing resources [BG99]. Typical collec-
tions, such as relational orXMLdata sources, can very eas-
ily be described usingRDF; it is also possible to automat-
ically produce large fractions of anRDFdescription from,
say, anXML DTDor a relational schema. AnRDFdoc-
ument is also used to update the meta-data if a provider
changes or extends its services and the ID of anRDFob-
ject is used to unregister (i.e., delete) services.

To find relevant resources and retrieve statistics and
authorization information, the lookup service provides
a declarative query language. As an example, Figure 9
shows how to ask the lookup service for all collections
that supply data for thehoteltheme. More specifically, the
query of Figure 9 asks forhotel collections which have
city, address, andprice attributes and the query asks for
the uniqueId of the collection (used to identify repli-
cas) and information about allattributes. (The “?” in the
query is ananyoperator.) The result of this query is shown

in Figure 10; here, we show the results for thehotel col-
lection specified in theRDFdocument of Appendix B.

The lookup service also allows the definition of views.
These views can be materialized. Such materialized views
are very helpful to supportsessionsin which search re-
sults are iteratively refined. For example, it is possible to
first ask for all cycle providers which are allowed to pro-
cess objects of a specific collection and then, in a separate
search request, ask which ofthesecycle providers are ca-
pable to execute a specific query operator.2 This feature is
important for parsing and optimization and for users who
interactively browse the meta-data.

3.1.3 Implementation DetailsThe lookup service is a
distributed component of the ObjectGlobe system and it
is implemented in a hierarchical architecture (Figure 11).
A relational database system serves as basic data stor-
age, mainly for the advantages in robustness, scalability,
and query abilities. Meta-data (i.e.,RDFdocuments) are
mapped to tables as described in [FK99]. Search requests
are translated into SQL join queries. This translation is not
one-to-one as the lookup service hides the details of how
the meta-data is stored. Lookup service clients, for exam-
ple, can ask for all cycle providers that are allowed to pro-
cess objects of a specific collection. The lookup service
will answer such a query considering all groups of cycle
providers as well as all positive and negative authoriza-
tions. Translating search requests into SQL queries is quite
complicated (albeit straightforward) and describing all the
details is beyond the scope of this paper. Figure 11 shows
the following lookup service components:

Providers: Cycle, data, and function providersregister
their services and resources at one of the backbone
meta-data providers (MDPs).

Meta-data Providers: The backbone of the MDPs contains
global meta-data, usable by everyone on the Internet.
The data registered at the backbone meta-data provi-
ders is kept consistent, i.e., the meta-data is replicated
between the MDPs of the backbone. If some data is
updated at one MDP, the update is propagated to the
other MDPs of the backbone.

Local meta-data repositories: Basically, a local meta-data
repository (LMR) caches meta-data of an MDP. If this
data is changed (at an MDP), all caching LMRs are
notified. Rules (similar to queries) are used to spec-
ify which meta-data should be cached. An LMRsub-
scribesto an MDP and registers its subscription rule
set. The MDP uses the rule set to determine the local
meta-data repositories to which newly registered meta-
data must bepublished. It is also used to forward up-
date notifications to LMRs.

2 Of course, these cycle providers could also be found in a
single search request.



10 R. Braumandl et al.

selectprice, address
from hotel
wherecity=’New York’

Fig. 8 SQL Query

searchPartition d
selectd.uniqueId, d.attributes.∗
where d.theme.name=“hotel”

and d.attritutes.?.topic=“city”
and d.attritutes.?.topic=“address”
and d.attritutes.?.topic=“price”

Fig. 9 Example Search Query

<collection>
<uniqueId>4711</uniqueId>
<attribute topic="city" domain="String"/>
<attribute topic="price" domain="Integer"/>
<attribute topic="address" domain="String"/>

</collection>

Fig. 10 Example Search Result

Provider
Resourcesregister

resources
register

Meta-data

real estates

Provider
Backbone

resources

Repositories for
Meta-datasubscribe

publish

Specialized Topics

data provider

BrowserObjectGlobe
Parser

Lookup Service
Clients

subscribe

publish

function provider

local meta-data

nn_10wrap_S

thumbnail

local meta-data

meta-data
provider

meta-data
providerprovider

repository

meta-data

repository

Fig. 11 The Architecture of the Lookup Service

Additionally, an LMR stores local meta-data that
should not be accessible to the public. Therefore this
meta-data is not forwarded to any MDP.
For efficiency reasons (note that the meta-data lookup
is a part of the query optimization) search requests are
processed by LMRs only. An LMR uses only local and
cached meta-data to evaluate a search request. Only ex-
plicit MDP requests are forwarded to an MDP.

Lookup Service Clients: Clients access the lookup service
by connecting to an LMR and stating queries using the
lookup service’s query language. Figure 11 depicts two
clients, the ObjectGlobe parser and an end user brows-
ing the meta-data of an MDP and an LMR.

Typical subscribers to an MDP will register hundreds of
rules. The set of all registered rules is called thesubscrip-
tion rule base. If new meta-data is registered, updated, or
deleted at an MDP, all registered rules must be evaluated.
To improve performance, an MDP applies a prefilter al-
gorithm that takes the modified meta-data and efficiently

determines a superset of the rules that are affected by the
modification. In a second step, all rules of this superset
are evaluated incrementally using only the modified meta-
data. Only some special rules require additional, unmodi-
fied meta-data to be included in the evaluation. All basic
parts of the prefilter algorithm are mapped to SQL queries
executed by the RDBMS used as data storage. The scal-
ability of RDBMSs regarding a great amount of data and
multiple queries at a time is used by the lookup service’s
prefilter algorithm to gain scalability in terms of a large
database and a multitude of subscription rules stemming
from the many LMRs. Additionally, the lookup service’s
architecture itself is scalable in terms of the number of
users by adding additional LMRs when necessary. A forth-
coming paper describes this part of the lookup service in
more detail [KKKK01].



ObjectGlobe: Ubiquitous Query Processing on the Internet 11

Query
Collection

C2
Collection

C3

Theme "hotel"

Collection C1

Fig. 12 Relationship of Theme, Collections, and Query At-
tributes

3.2 Parser and Optimizer

Plans for a query are generated by the ObjectGlobe query
parser and optimizer. As shown in Figure 1, the parser
looks up the relevant resources for a query and the op-
timizer produces a plan based on (a subset of) these re-
sources.

3.2.1 Parser The main effort carried out during parsing
is to issue search requests to the lookup service in order to
discover all relevant resources (i.e., collections, functions,
and cycle providers). The parser aborts the processing of
a query if for some part of the query, no resources can
be found. Relevant collections are found using thethemes
and attributes specified in a query. All themes used in
the query’sFROMclause and their corresponding attributes
used in theSELECTandWHEREclauses define the query’s
schema. The relationship between the attributes used in a
query, the attributes recorded for collections in the lookup
service, and the attributes of a theme are depicted in Fig-
ure 12. For everythemereferred to in the query, the parser
queries allmatchingcollections from the lookup service; a
collection matches if it is associated to the requested theme
and provides a superset of all attributes used in the query.
For example, assume the SQL query given in Figure 8.
From this query the parser determines a schema consisting
of the attributeshotel.city, hotel.address, hotel.price, rep-
resented by the gray filled circle in Figure 12. To find all
relevant collections the parser queries from the lookup ser-
vice all collections associated to thehotel theme (collec-
tions C1, C2, and C3) and providing at least the attributes
city, address, andprice (only collections C2 and C3). The
resulting search request to find relevant collections for the
query of Figure 8 is given in Figure 9.

As Figure 12 shows, collections may provide more at-
tributes than are actually used in a query. In the execu-
tion phase, the schema of a collection is projected to the
schema required by the query execution plan. So, in Fig-
ure 12, the operator used to access collection C2 will not
return all attributes represented by the dashed circle C2,
but only the attributes of the intersection of the sets C2
and Query (the attributescity, address, andprice).

Likewise, the parser looks for function providers for
each external function used in a query; again, external

functions such asthumbnailcan have several implemen-
tations from different function providers; all implementa-
tions that match the right name and signature are consid-
ered. Query operators such asjoin, union,or displayare
typically implicit in a query; forjoin andunion the parser
will consider built-in variants and all variants provided by
function providers. Fordisplay, the parser will always con-
sider ObjectGlobe’s built-in variant which producesXML
to represent query results; the parser will only consider a
differentdisplayoperator if this is explicitly requested.

In theory, every cycle provider can be useful to exe-
cute a query. Consideringall cycle providers for every in-
dividual query would simply be infeasible. To find relevant
and interestingcycle providers, data and function provi-
ders can register a set ofpreferred cycle providersto han-
dle their data or execute their functions; this set of pre-
ferred cycle providers will typically include the machines
of the data or function provider. In addition, each Object-
Globe end user (or application programmer) can specify
a set of preferred cycle providers; this set may include the
client machine of the user. For a given query, the parser de-
termines the overall set of interesting cycle providers from
the preferred cycle providers of the user and of all relevant
data and function providers. From this set, the parser will
further prune cycle providers which are clearly not useful;
e.g., cycle providers which are not allowed to process any
function. It should be noted that registering preferred cy-
cle providers is optional; therefore, it is possible that the
parser stops processing a query if neither the user nor any
relevant data or function provider have specified preferred
cycle providers, although the query could be executed us-
ing non-preferredsites.

In addition to discovering the relevant resources, the
parser consults the lookup service in order to retrieve all
available statistics and authorization information. As a re-
sult, the parser produces a (quite complex)XMLdocument
which is then used by the optimizer in order to generate a
plan. Figure 13 shows how the authorization and applica-
bility information is represented as acompatibility matrix
for the collections, functions, and cycle providers of the
example of Section 2.2. For each relevant data collection
such a compatibility matrix is generated by the parser. A
point at (c, f) in a matrix of a collection is set if cycle
providerc is authorized to see the collection, functionf
is authorized to process objects of the collection,c is au-
thorized to executef , andc is capable of executingf (i.e.,
has enough memory and disk space). For instance,wrap S
may be executed at all cycle providers in order to read col-
lection S, but it may obviously not be used anywhere to
read collectionR or T . In the matrix, built-in query opera-
tors such asdisplay, scan, andjoin are treated in the same
way as external functions (e.g.,thumbnailand wrap S);
it would be possible, for instance, that a cycle provider



12 R. Braumandl et al.

6

function

-

cycle provider

Cl. = Client A B Cl.

scan(R)

wrap S

scan(T)

thumbnail

join

display

u

u u u

u u u

u

A B Cl.

scan(R)

wrap S

scan(T)

thumbnail

join

display

u u u

u u

u

A B Cl.

scan(R)

wrap S

scan(T)

thumbnail

join

display

u

uu

u u

u

︸ ︷︷ ︸

R

︸ ︷︷ ︸

S

︸ ︷︷ ︸

T

Fig. 13 Compatibility Matrices for the Example of Section 2.2

only allows its own join methods to be executed on its ma-
chines.

3.2.2 Optimizer The goal of the optimizer is to find a
good plan to execute a query, if a plan exists. The “if a
plan exists” part is important because the ObjectGlobe op-
timizer, unlike a traditional optimizer, might sometimes
fail to find a plan, even if the parser was able to discover
relevant resources. First of all, limitations due to autho-
rizations can make it impossible to find a valid plan; for
instance, it might happen that two collections cannot be
joined because there is no cycle provider that has per-
mission to see both collections. Furthermore, ObjectGlobe
users and applications can specify quality parameters for
the query execution itself as described in Section 2.3. For
example, if the user’s upper bound for the costs of a query
is 10e and the optimizer does not find a matching plan for
this constraint, the user is informed about this fact and no
query execution takes place.

The optimizer enumerates alternative query evaluation
plans using a System-R style dynamic programming al-
gorithm. That is, the optimizer builds plans in a bottom-
up way: first so-calledaccess plansare constructed that
specify how each collection is read (i.e., at which cycle
provider and with whichscanor wrapperoperator). After
that, join plans are constructed from theseaccess plans
and (later) from simplerjoin plans. To deal with unary
external functions and predicates, the dynamic program-
ming algorithm is extended as described in [CS96]. In ev-
ery step, the quality of each plan is estimated and inferior
plans are pruned in order to speed up the optimization pro-
cess. Rather than presenting the full details of the Object-
Globe optimizer, we would like to highlight the peculiari-
ties that make the ObjectGlobe optimizer special:

Quality of Service Model The support for user defined
QoS constraints on queries makes it necessary to use a
more general measurement model for query plans than the

usually implemented cost models. In contrast to the tra-
ditional one dimensional cost assessment ourQoS model
uses a separate dimension for every quality parameter, like
response time, monetary cost, and result cardinality. All
these dimensions span a space, which we call QoS space,
and the user-defined constraints determine an area in that
space, which we call QoS window. This is shown in Fig-
ure 14 for a (simplified) three dimensional QoS space.
During optimization every enumerated plan is mapped to
a point in that QoS space by estimating the value for ev-
ery quality parameter, which appears in the quality model.
Only plans which lie within the QoS window fulfill the
user constraints. As shown in [GHK92], where we bor-
rowed the basic ideas for multi-dimensional optimization,
pruning can only work with a partial order in such a set-
ting. This is depicted in Figure 15, where we restricted the
QoS space even further to only two dimensions in order
to simplify the illustration. The figure shows, for example,
that the planP1 is superior regarding time and cost con-
sumption to the plansP4 andP5. AlthoughP1 produces
the query result faster, its execution is cheaper than the
execution ofP4 andP5. P1, P2, andP3 are incompara-
ble, but onlyP1 andP2 are candidate plans, becauseP3
lies outside the QoS window. The arrows emanating from
these incomparable plans mark the area in the QoS space,
which is dominated by the respective plan. The planP4
lies inside the QoS window (i.e., the plan fulfills the user
constraints), but it is no candidate plan, because it is dom-
inated by the plansP1 andP2 both of which are superior
to P4 in all dimensions of the QoS space. Thus,P1 and
P2 are the only plans “surviving” the pruning. The deci-
sion betweenP1 andP2 is made according to a heuristic,
which chooses the plan with the largest, minimum normal-
ized distance to any of the borders of the QoS window.

To estimate the quality parameters of a plan the opti-
mizer relies on the statistics and measurement functions
registered in the lookup service. In the absence of such
statistics, the ObjectGlobe optimizer willguess(i.e., use



ObjectGlobe: Ubiquitous Query Processing on the Internet 13

Cost

Response
Time

Cardinality
of Result

max

min

max

QoS Window

QoS Space

Fig. 14 The QoS Space and the QoS Window.

P4

Time

Cost
0

QoS Window

P3

P5

P1

P2

Fig. 15 The Partial Order for Plans.

default values), just as any other optimizer. Work on as-
sessing plans in distributed and heterogeneous query pro-
cessors without explicit knowledge of the involved data
sources has been reported in [ROH99] and we are extend-
ing our framework along the lines of this work. For a more
detailed description of QoS in ObjectGlobe the interested
readers are referred to [BKK01].

Optimization Goal The optimization goal of our opti-
mizer is closely related with the goal of the QoS manage-
ment component. There are two obvious goals for our QoS
management component and the first one concerns query
optimization:

– The percentage of successful queries, whose quality
constraints could be fulfilled, should be maximized.
This percentage is calculated based on the overall
number of queries which are issued and not only on
the number of those for which a constraint compliant
query plan could be determined.

– The execution of queries which cannot fulfill their QoS
constraints, should be stopped as early as possible.

A query can only meet its quality constraints, if it gets a
sufficiently good service from all involved providers. The
difficulty in achieving a high percentage of QoS compli-
ant queries is to find at optimization time a query plan
that uses providers which can provide for a sufficiently
good service at execution time. The optimizer uses esti-
mates about the providers to construct such a query plan
and the question is now, whether these estimates also hold
during execution. We cannot always work with resource
reservations at optimization time because the administra-
tive overhead and the inherent reduced resource utilization
are not acceptable for all providers. In our approach we ex-
ploit that different queries often have different demands at
specific providers (e.g., batch queries in contrast to inter-
active queries). For every involved provider we explicitly
state these demands in the form of resource requirements
and quality constraints in the query plan. During the plug-

and execution phases, we can use this information in order
to check, if the demands of a query are really affected by
other queries. Every query which seems to miss its quality
constraints, tries to get a greater share on the resources of
the provider at the expense of queries which can work suf-
ficiently with a smaller share. If such an adaptation is not
possible and the query will not fulfill its QoS constraints
our second goal demands to stop the query in order to save
the time and money of the user.

Compatibility Matrix During query optimization every
plan is annotated (among others) with a compatibility ma-
trix. The compatibility matrix of an access plan is identi-
cal with the compatibility matrix generated by the parser
for the corresponding collection (13). The matrix of a join
plan which is composed of two sub-plans is generated by
ANDing the two compatibility matrices of the two sub-
plans, resulting in a more restrictive matrix.

Sanity Checks Some sub-plans can be immediately dis-
carded during plan enumeration based on the sub-plan’s
compatibility matrix. As an example, consider the follow-
ing situation: collectionsR1 andR2 belong to the same
themeR and a query is interested inf(R) for some exter-
nal functionf . For collectionR1, f may only be executed
by cycle providerx; for collectionR2, f may only be exe-
cuted by cycle providery. Now a sub-planR1∪R2 can im-
mediately be discarded because there is no way to execute
f on top ofR1∪R2 (neitherx nory work); in other words,
theR1 ∪R2 plan has no points set in thef row of its com-
patibility matrix. (Note, however, that anf(R1) ∪ f(R2)
plan is valid, if it is equivalent.) If several variants off ex-
ist, then theR1 ∪ R2 plan can be discarded if there is no
point set in theshelf of f rows. (A shelf is a set of rows
in the matrix for different variants of the same function.)
Obviously, a plan can also be immediately discarded if an
estimated value for one of its quality parameters exceeds
the specified limit.



14 R. Braumandl et al.

We also carry out more sophisticated sanity checks at
the beginning of query optimization. For example, there
must be at least one cycle provider which has permission
and is capable to execute thedisplayoperator for each col-
lection. Typically, this must be the client machine at which
the query was issued. If such a cycle provider does not ex-
ist, then no plan exists and the optimizer can stop without
enumerating any plans. In theory, such sanity checks that
span several compatibility matrices could be applied in or-
der to discard certain sub-plans during the plan enumer-
ation process; since these sanity checks are quite costly,
however, they are only carried out once, at the beginning
before plan enumeration starts.

UNION Queries As shown earlier, collections can be
horizontal partitions which need to beunionedand differ-
ent collections of the same theme can have different au-
thorization requirements (i.e., different compatibility ma-
trices). As a result, the optimizer must consider each col-
lection individually, even collections of the same theme
which are not treated individually by traditional optimiz-
ers. Considering every collection individually involves ex-
tending the dynamic programming algorithm for plan enu-
meration; essentially, the optimizer enumeratesR1∪R2 in
the same way as a two-way join plan andR1 ∪ R2 ∪ R3

in the same way as a three-way join plan, ifR1, R2, R3

belong to the same theme. The ObjectGlobe optimizer
would also consider plans like(R1 ∪ R2) � S as well as
(R1 � S) ∪ (R2 � S) for queries that involve these three
collections.

IDP Evidently, the search space can become too large
for full dynamic programming to work for complex Ob-
jectGlobe queries. To deal with such queries, we devel-
oped another extension that we calliterative dynamic pro-
gramming(IDP for short).IDP is adaptive; it starts like
dynamic programming and if the query is simple enough,
then IDP behaves exactly like dynamic programming. If
the query turns out to be too complex, thenIDP applies
heuristics in order to find an acceptable plan. Details and a
complete analysis ofIDP is given in [KS00].

4 Query Plan Distribution and Execution

As mentioned before, ObjectGlobe was implemented in
Java for two reasons: portability and security. In this sec-
tion we will describe how we utilized Java’s features to
achieve extensibility and query operator mobility with-
out compromising security. We will also describe Object-
Globe’s monitor concept for controlling the progress of
distributed query plans.

4.1 Distributing Query Evaluation Plans

Query plans are distributed in a straightforward way us-
ing thecycle-providerannotations of the iterators in the
plan. Every cycle provider loads the code of the exter-
nal operators with a specialized ObjectGlobe class loader
(OGClassLoader); theURL of the code is given in the
codebaseannotation. If a cycle provider requires that the
code is signed (authenticated), then the OGClassLoader
will check the signature of the code. Furthermore, all com-
munication paths are established by (built-in) send and re-
ceive iterators. If desired (i.e., specified in the annotations
of the plan) secure communication paths are established
using secure protocols (Section 2.4).

4.2 Authentication and Authorization

If a provider restricts the use of its resources and there-
fore requires some kind of authentication of users the au-
thentication information will be part of the query plan
(again, as part of an annotation). Two possible authen-
tication schemes are supported. (1) A user can provide
a password. The password is used to generate a secret
key (using the PKCS#5 Password-Based Encryption Stan-
dard [RSA99]) which is afterwards used to calculate a
MAC (Message Authentication Code) of the query plan
and some additional data. (2) The user possesses a valid
X.509 certificate [HFPS99,PKI]. The certificate is used to
calculate a digital signature of the query plan and some
additional data.

One problem remains. What if a data provider does not
support one of these schemes, i.e., requires the password
in plain text? The password is included (as authentication
information) in the query plan. The wrapper accessing the
data provider extracts the password and passes it to the
data provider. To keep the password secure it is encrypted
with the public key of the cycle provider that executes the
wrapper. So no other cycle provider is able to access the
plain password.

Authorization is carried out by the individual providers
when a query is instantiated. Each provider autonomously
decides if it allows the local execution of the query plan
depending on the local policy. Most providers will delegate
this decision to a local security provider which is included
in the ObjectGlobe system. Data providers may also have
their own security system (as most DBMSs have) that they
can use instead of the ObjectGlobe security provider.

The security provider uses a role-based access con-
trol (RBAC) model [SCFY96] to specify authorization
rules. RBAC distinguishes between users, roles which are
assigned to users and permissions which are assigned
to roles. ObjectGlobe provides permissions for allowing
or denying access to a relation (i.e., executing a wrap-



ObjectGlobe: Ubiquitous Query Processing on the Internet 15

per), loading and executing an operator and using a cycle
provider (i.e., execute a query plan at the cycle provider).

4.3 Extensibility

To integrate an external function, a function provider must
implement a simple predefined interface. To implement
an iterator, for example,open , next , close , andre-
open methods must be implemented following the itera-
tor model described in [Gra93]. The interface of other ex-
ternal functions (e.g.,transformerssuch as thumbnail) is
simpler; these external functions are wrapped by generic
(built-in) ObjectGlobe iterators.

In the following we briefly describe theopen method
for iterators, since it has a special requirement. Theopen
method returns an object of a class namedTypeSpec .
Such an object describes the type of the tuples which will
be produced with every call of thenext method. Type
specifications are also recorded in the lookup service; just
like authorization information, however, the type specifi-
cations recorded in the lookup service might be outdated or
incomplete. Based on these (runtime)TypeSpecs poly-
morphic functions can be constructed. Furthermore, it is
possible to compute theouter unionof two collections
that have different attributes; for example, twohotel data
sources on the Internet (e.g.,www.HotelBook.com and
www.HotelGuide.com ) might have slightly different
attributes and it is nevertheless possible in ObjectGlobe to
ask aSELECT * query that retrieves all attributes from
both sources.

4.4 Secure Query Engine Extensibility

We have utilized Java’s security model [Oak98] to guaran-
tee security of ObjectGlobe servers while executing exter-
nal operators from possibly unknown function providers.
Java‘s five-layer security model is illustrated in Figure 16.
Java is a strongly typed object-oriented programming lan-
guage with information hiding. The adherence to typing
and information hiding rules are verified by the compiler
and again by the class/bytecode-verifier before a Class ob-
ject is generated from the bytecode because code could
be generated by an evil compiler. The class loader’s task
is to load the bytecode of a class into memory, monitor
the loaded code’s origin (i.e., itsURL) and to verify the
signature of the authenticated code. The security manager
controls the access to safety critical system resources such
as the file system, network sockets, peripherals, etc. The
security manager is used to create a so-calledsandboxin
which untrusted code is executed. A special, particularly
restrictive sandbox is used, for example, by Web browsers
to execute Applets. The ObjectGlobe system is based on
the latest Java Release 2, in which the Security Manager

interfaces with the Access Controller. The Access Con-
troller verifies whether an access to a safety-critical re-
source is legitimate based on a configurable policy, which
is stored in thePolicyFile . Privileges can be granted
based on the origin of the code and whether or not it is
digitally signed (i.e., authenticated) code. In addition, the
Access Controller allows to temporarily give classes the
ability to perform an action on behalf of a class that might
not normally have that ability by marking code asprivi-
leged. This feature is essential, e.g., for granting access to
temporary files as explained below. Finally, the Java pro-
gram is executed by the interpreter (the JVM) which is
responsible for runtime enforcement of security by check-
ing array bounds and object casts, among others. From a
security perspective, it is irrelevant whether or not parts of
the code are compiled by a just-in-time (JIT) compiler to
increase performance.

Of course, it would be unreasonable to grant unpro-
tected access to system resources—such as the file system,
the network sockets, etc—to unknown code. Therefore, all
external operators are executed in a “tight” sandbox. Fur-
thermore, the name spaces of concurrent queries are sepa-
rated from each other (to be accurate every external opera-
tor runs within its own namespace to avoid problems with
name clashes and version mismatches). This way it is guar-
anteed, that they cannot illegitimately exchange informa-
tion via covert channels (“hidden communication paths”),
e.g., via static class variables of external operators. The
name space separation is achieved by using a new, dedi-
cated class loader (calledOGClassLoader) for each query.
This class loader is responsible for loading any additional
functions beyond the built-in ObjectGlobe classes. The
code bases (i.e., the function providers) from which these
operators can be loaded are annotated in the query exe-
cution plan. Since an external operator could abuse the
connection to a function provider as bidirectional commu-
nication channel, all (non built-in) classes required by an
external operator must be combined into a JAR3 file. This
archive file is loaded and cached by a class loader and the
connection to the function provider is closed. All requests
to non built-in classes must point to classes in the cached
JAR file otherwise they are rejected as illegal. Schemati-
cally, the name space separation and the class loaders are
illustrated in Figure 17(a).

Some user-defined query operators may require access
to the cycle provider’s secondary memory in order to store
temporary results. Obviously, we cannot generally grant
access to the file system to any external operator. Instead,
a particular built-in class, calledTmpFilehas to be used.
This built-in class provides a safe interface to create a tem-
porary file, to write into and read from the temporary file

3 JAR (java archive) is a platform-independent file format that
aggregates many files (compressed) into one (like ZIP) and is
supported by the Java Runtime Environment.



16 R. Braumandl et al.

PolicyFile

SecurityManagerClassLoader Interpreter/JIT
code Verifier
Class-/Byte-Compiler

AccessController

Fig. 16 Java’s Five-Layer Security Model

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

Query 2

Query 1

Query 3

(e. g. temporary files and network sockets)

access to local resources of the cycle provider

(iterators) supplied

by ObjectGlobe

basic query operators

ObjectGlobe

runtime system

(namespace of the OG system)

(e.g. TmpFile)
by external functions
which are accessible

classes of ObjectGlobe

interface to O
bjectG

lobe
Java Virtual Machine

sandbox for queries

system classloader

OGClassLoader

access to
function providers

over the
InternetOGClassLoader

OGClassLoader

namespaces for external functions

access to class files in the CLASSPATH

(a)

iterators supplied by ObjectGlobe

external iterators

temporary
files

TmpFileTmpFile

sandbox for query

TmpFile

(b)

Fig. 17 (a) Security of Dynamically Loaded Code, (b) Extending Privileged Access Rights to User-Defined Operators

and to delete the temporary file. Furthermore, aTmpFile
object ensures the automatic deletion of the corresponding
file when it is garbage collected. This way it is guaranteed
that external operators can only operate on temporary files
that they created themselves (within the same query exe-
cution plan). This scenario is illustrated in Figure 17(b).

Access to network sockets is normally prohibited to
external operators to prevent them from sending any in-
formation about the data they process (to unknown loca-
tions). This restriction needs to be relaxed when a cycle
provider wants to execute a wrapper which accesses data
that is published by, e.g., a Web server. Therefore the pol-
icy of the Access Controller can be configured to allow a
trusted and authenticated wrapper to establish a connec-
tion to a particular host on a given port. It is also possi-
ble to configure a relaxed policy that gives this privilege
to arbitrary wrappers. The more restrictive policy situation
is, for example, suitable for a wrapper accessing anFTP
server to fetch a file. Granting the right to connect to this
server to any external operator would allow operators to

store any kind of information at this server, which is cer-
tainly not desirable. The more relaxed policy is applicable
if granting access to a server is harmless; e.g., access to
a server which only sends up-to-date exchange rates for
given currencies.

The sandbox security model cannot protect providers
from so-called denial of service attacks where malicious
code overconsumes CPU cycles or other resources. To
protect cycle or data providers from this kind of attack,
accounting and authentication can help for identifying
intruders. We developed a (system dependent) java li-
brary based on the Java Virtual Machine Profiler Interface
(JVMPI) [Sun99], an (experimental) interface provided by
Java Release 2. This library keeps account of memory and
CPU usage of external operators, other resources like the
number of bytes written to secondary memory can be de-
termined using pure Java.

As a part of a general accounting mechanism we will
describe our monitor component which is used to control
the progress of query operators. This way some simple



ObjectGlobe: Ubiquitous Query Processing on the Internet 17

overconsumption problems, such as operators which ma-
liciously or accidentally consume resources without pro-
ducing results, can be detected and repaired by halting the
query execution.

4.5 Monitoring the Progress of Query Execution

As we have mentioned in Section 2.3, the optimizer de-
termines for each sub-plan of a query threshold values for
the time and cost consumption and the cardinality of inter-
mediate results which need to be met by the query execu-
tion in order to fulfill the user-defined quality constraints.
Wrong estimates or resource fluctuations can cause over-
drawn thresholds, which probably result in a violation of
the quality constraints. Therefore, our QoS management
component monitors the query execution in order to detect
and to react on potential quality violations.

As an important sub-task of this monitoring, we have
to check, if a query still makes any progress at all. The exe-
cution of a distributed query can fail for a variety of rea-
sons: network failures, crashed servers, badly programmed
external operators, extremely overloaded servers, etc.
Without precautions such failures can lead to live- or dead-
locked query execution plans, in which upper-level query
operators wait indefinitely for blocked sub-plans to de-
liver their results. Therefore, it is important to monitor the
progress of the query execution and inform the participat-
ing ObjectGlobe servers about failures.

4.5.1 Monitoring the Liveliness of Query Execution
Each ObjectGlobe server uses a dedicated thread (we call
it the monitor thread) for detecting timed-out queries. A
monitor thread operates on a data structure, which is orga-
nized as a priority queue. The objects stored in this queue
represent future points in time and the object with the clos-
est point in time has the highest priority. Such an object
(we call it a timeout object) specifies an event inside a
query, which has to occur in that query until the specified
point in time has been reached. If its time has expired, the
monitor thread removes the timeout object from the queue
and checks if the associated event has occurred. If this is
the case, the object is discarded and nothing else happens.
Otherwise the affected sub-plan of the query is assumed to
be blocked and it is terminated by a special “terminator”
thread. When a sub-plan is stopped due to an error condi-
tion in an operator, the ObjectGlobe servers, executing the
operators beneath and above the failed one in the plan hi-
erarchy will be informed about this fact. The sub-plans of
the operators below the blocked node will normally fail.
The operators above it could react to the failure in spe-
cial ways (also fail, rearrange the plan, execute an alter-
native sub-plan, etc. [CD99]). The propagation of an error
up the hierarchy is performed by the standard exception
handling mechanism of Java ”with a little help” from our

send-/receive operator pair for crossing network connec-
tions. The servers of child operators cannot be informed
with the exception mechanism. A special (UDP) network
protocol is used for this purpose.

So far we have not mentioned where the timeout ob-
jects come from. These objects are created by a special
type of operator, themonitor operator. A monitor operator
can be inserted at arbitrary positions in a query evaluation
plan, since it does not change its input tuple stream. Po-
sitions where we will always insert monitor operators are
above receive operators and above any external operator.
Its task is to observe the progress of the actions performed
by the sub-plan beneath. For example, at the beginning of
its open method a monitor operator creates a timeout ob-
ject for the event “end of open reached” and inserts this
object into the priority queue of the monitor thread, while
also keeping a reference to that object. After that, the open
method of its child operator is called. When the method
invocation returns, the timeout object is informed, that its
awaited event has occurred.

The advantage of this architecture is that the decisions
about where to monitor in a query evaluation plan and with
what parameters the timeouts should be initialized can be
made in a flexible manner. Setting timeouts is critical, just
as in any other system. One option is to set the timeout
based on the response time estimates of the optimizer. An-
other option is to use a default value. Other operators and
especially external operators need not implement anything
for the monitor component. An overview of this architec-
ture is given in Figure 18.

4.5.2 Monitoring the QoS of Query ExecutionMonitor
operators are not only used for observing the liveliness of a
query execution, but also measure the current status of the
quality parameters of the execution. As we have mentioned
in Section 3.2 the quality model, which is used for assess-
ing query execution plans during optimization, produces
for every sub-plan an estimated value for each quality pa-
rameter, like response time, cost and cardinality. These es-
timates can be seen as balances of accounts, which can
be positive or negative. A balance of 500 for the response
time account and 100 for the cost account, for example,
tell the monitor operator that the execution of the sub-plan
beneath it is allowed to last 500 time units and may cost
at most 100 monetary units. For a cardinality account with
a balance of -700 we can infer, that the sub-plan should at
least produce 700 result tuples. An example account con-
figuration is shown in Figure 19 for a query searching for
real estate, which are close to a bigger city (predicates are
not shown in the figure).

During query execution monitor operators keep track
of the number of tuples produced, the time and cost con-
sumption of the execution and some rates like cost or time
consumption per produced tuple. These rates are used for



18 R. Braumandl et al.

Monitor
Operator

Query 2Query 1
priority queue
for timeouts

Server 2

inform about failed sub-plans

terminates

sub-plan
a failed

insert
timeoutMonitor Thread

terminator 2

terminator 1

inform about failed sub-plans

Server 1

Server 3

Fig. 18 The Architecture of the Monitor Component.

real estate

distances

cities

account

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
��� ���

���
���

���
���
���

subplan

: Cardinality
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

: Response Time

���
���
���

���
���
���

: Costs

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

overall
account�

�

Fig. 19 QoS Accounts of a Query Plan.

real estate cities

Monitor Operator

distances

Check the

Action

Event

Event and Conditions

ECA-Rules

�

�

Fig. 20 Feedback Loop for QoS Adaptations.

projecting the past development of the quality parameters
into the future. For example, the formula

TN + RTN (CE − CN )

uses the time consumption for the production of all the
tuples so far (TN ), the time consumption per produced tu-
ple (RTN ) and the estimated and current result cardinality,
CE andCN , to compute an estimate for the overall time
consumption of the sub-plan. If this estimate exceeds the
balance of the corresponding account, we expect that the
overall execution of the sub-plan will eventually violate
the constraints for that quality parameter.

The quality constraints of a query execution are mainly
jeopardized by inaccurate estimates during the optimiza-
tion phase and resource fluctuations in the distributed en-
vironment. To ensure a prompt reaction of our forecasting
mechanisms in a changing environment we do not base the
computation of the consumption rates on the whole history
of the query execution, but on a smaller, current window
of it, i.e., we use a moving average computation. A prompt
signaling of a quality loss event helps our QoS manage-
ment component in applying a corrective adaptation of the
execution early, so the adaptation has more time to show

an effect. If no adaptation seems appropriate for a quality
loss event, we also profit from an early signaling, because
we can stop the execution at an early stage, when the con-
sumption of time and cost is still low.

In the following we give an overview of the adaptations
which we apply on query execution plans. Naturally, the
kind of jeopardized quality parameter determines the set
of useful adaptations.

Prevention of Response Time ViolationIf a sub-plan
seems to miss its constraints on the response time, we can
use adaptations on the resource or the application level. On
the resource level, for example, we can change the priority
of the respective thread, the main memory allotment for
the respective operators or we can renegotiate the network
service quality, if the used network supports itself QoS
handling like an ATM network. However, more promising
are adaptations on the application level like the activation
of compression at runtime for the data sent through a net-
work link or the movement of complete sub-plans together
with their state from one cycle provider to another—again,
during the runtime of the query. For example, if a moni-
tor operator detects that a sub-plan suffers from too small



ObjectGlobe: Ubiquitous Query Processing on the Internet 19

a percentage of CPU time which is available for it on a
cycle provider, the QoS management component can de-
cide to move this sub-plan with all its state information
to another, better suited cycle provider. The remainder of
the sub-plan’s work is then performed on the new cycle
provider. All the other sub-plans of the same query above
and beneath that sub-plan are not affected by this move
operation, because the relevant communication links be-
tween the sub-plans are disconnected and reestablished au-
tomatically by the runtime system of our query processor.

Prevention of Cardinality or Completeness ViolationIf
the cardinality constraints or the completeness constraints
are in danger, we can use an adaptation accomplished by
our union operator, which establishes a new branch at run-
time. This means, that we integrate additional data sources
in the query execution, which were not involved in the
original query execution plan. Of course the information
about these additional data sources was appended to the
plan during the optimization phase.

Prevention of Cost Violation If the costs of a sub-plan
seem to exceed the corresponding limit, we can try to
reduce the amount of processed data, by stopping input
plans before they are finished. Other ways for reducing
cost consumption are the movement of a sub-plan to a cy-
cle provider, which charges less money for the execution,
or the exchange of externally loaded functions, like thumb-
nail encoders, with versions, that produce, for example, a
result with a reduced quality, but with less effort.

The application of an adaptation depends on a number
of conditions, as described above, and one must also see,
that an adaptation, which tries to remedy a pending qual-
ity loss in one parameter, could make the situation worse
for another parameter. Therefore, the application of adap-
tations is controlled by an event-condition-action rule set,
which is part of the feedback loop of the runtime QoS man-
agement. This situation is sketched in Figure 20.

5 Usage of an ObjectGlobe Federation

In the former sections we described the techniques used in
the ObjectGlobe system; now we deal with more global
aspects regarding application scenarios. First we sketch
some common network constellations of distributed infor-
mation systems and the security requirements they impose.
After that we give some ideas on how a highly dynamic e-
commerce marketplace can be implemented based on the
ObjectGlobe system.

5.1 Usage Scenarios and their Security Implications

The applications of an ObjectGlobe system can be distin-
guished according to the openness of the underlying net-

work. In the following paragraphs we describe three dif-
ferent scenarios with varying levels of openness and the
resulting security requirements.

Intranet An Intranet is a controlled network within an or-
ganization and therefore access is restricted to a limited
group of authorized users, the employees of the company.
ObjectGlobe’s cycle-, data-, and function providers are lo-
cated within the Intranet and all query operators are written
by employees of the company or bought from trustworthy
third party suppliers. Therefore, these operators can be ex-
ecuted in privileged mode, e.g., these operators are granted
privileges to access the disk or establish network connec-
tions. To avoid that operators are manipulated, they should
be signed (authenticated) by a responsible security admin-
istrator of the ObjectGlobe system. Extended privileges
can then be restricted to these authenticated operators. If
there is a need for secure communication (e.g., if there are
outposts), ObjectGlobe can establish secure communica-
tion channels itself or it can rely on underlying network
layers (e.g., hard- or software enabling a virtual private
network).

Extranet An Extranet is a network that is used by different
companies, e.g., by a company and its suppliers, forming
a virtual enterprise. An important example for an extranet
is an electronic marketplace. There are many different sce-
narios how virtual marketplaces can be run, but we assume
in this example that the core cycle- and function providers
of the marketplace are operated by an independent organi-
zation, which is also responsible for authenticating (sign-
ing) external operators. Within the Extranet these authenti-
cated operators can be executed with additional privileges.
Every participant of the marketplace at least operates a
data provider to supply its product catalog and operators to
access it, but it can operate additional cycle providers, too.
The task of such cycle providers could be to execute ex-
ternal operators developed by the participants themselves,
either because the marketplace does not trust the operators
or because the participants do not want others to execute
their operators to prevent, e.g., decompilation of the oper-
ators. As in the Intranet scenario there are several built-in
possibilities to achieve secure communication.

Internet The (global) Internet is the most challenging en-
vironment. As mentioned in Section 4.4, protecting the
sensitive resources of cycle providers is necessary because
external operators could contain hostile code. There is a
great deal of external operators which are not signed or
signed by unknown function providers and, thus, cannot be
trusted. With its effective security component ObjectGlobe
is able to execute such operators in a protected sandbox,
thereby guaranteeing security and stability of the system.
Furthermore cycle providers must be protected against de-
nial of service attacks. This is done by monitoring resource



20 R. Braumandl et al.

consumption of external operators. However, the existing
monitoring component can only detect simple overcon-
sumption problems.

5.2 Example Application Scenario: Dynamic Electronic
Markets

The ObjectGlobe architecture supports e-commerce in two
directions. On the one hand it enables the implementa-
tion of current application scenarios on top of heteroge-
neous data sources. That is, complete integration solutions
of heterogeneous DBMSs based on ObjectGlobe’s query
processing capabilities and wrapper technology can be de-
veloped. Even a global information-sharing system can be
architected as a dynamic ObjectGlobe federation due to its
openness, scalability, and decentralization. As another ex-
ample, current electronic marketplaces with their demand
for integrated product catalogs, access to back-end data
sources, and applications can also be implemented with
ObjectGlobe.

ObjectGlobe provides for more flexibility: It helps to
develop new business models and application scenarios.
Fine grained application service providing of application
logic in the form of user-defined operators is achieved
when providers can charge for these services. Providers
can confederate to theme communities in order to offer
complete service packages, e.g., relocation, travel, raw ma-
terial, etc. Also finding the right Internet data source, as
one of the main problems in the Internet, could be alle-
viated by specialized providers offering meta-data or re-
source descriptions.

Since current e-commerce solutions for electronic
marketplaces are mostly designed for the needs of large
enterprises, which use complex enterprise resource plan-
ning systems (ERP-Systems), the majority of smaller en-
terprises remain excluded. While in existing solutions
mostly all available information is centralized (e.g., prod-
uct and price information, security information, special
buyer-seller arrangements), ObjectGlobe enables to archi-
tect open and easily accessible marketplaces.

Enterprises are able to participate in the marketplace,
either using complex ERP-wrappers or even simple text
input forms, appropriate to their back-office solution. Fur-
thermore, marketplace participants can define their own
privacy policy (within certain limits). Private information
like prices, availability, conditions, or arrangements need
not be stored centralized at the marketplace.

Figure 21 sketches an example marketplace applica-
tion where a complete service package can be requested. A
private individual searches for a real estate and relocation
support. In contrast to existing marketplace solutions users
need not search for each service separately and join the
services themselves to find the overall best/cheapest com-
bination but the ObjectGlobe marketplace provides this us-

ing a new query operator. Private information like pricing
conditions and availability are not stored centrally at the
marketplace but remain at the participants’ sites, i.e., under
their direct control. For that reason distributed sub-queries
provide the requested data.

Marketplace

Relocation Agency

Private Individual

subquery: real estate

Real Estate

query: real estate and relocation

subquery: relocation

Fig. 21 Relocation Marketplace

Bidders who want to participate only have to regis-
ter their service, i.e., data description, wrapper, or spe-
cial query operators, at the marketplace and extend the of-
fered services. For example, a painter can join the reloca-
tion marketplace above. Using this approach, new service
communities or service portals can be established in the
same easy and incremental way. This scenario shows that
ObjectGlobe helps in developing a dynamically extensible
electronic marketplace, in which new data and service re-
sources can easily be integrated.

6 Performance Experiments

6.1 Overheads of Plan Generation

To determine the overheads of plan generation, we mea-
sured thelookupandoptimizesteps of processing a five-
way join query. The optimizer ran on a Sun Ultra 10 work-
station; the lookup service ran on a Sun Ultra 1 work-
station. There were six relevant cycle providers and the
optimizer considered three different join variants (nested-
loops, hash, and sort-merge). We studied two different sce-
narios. In Scenario I, all joins could be executed at all cy-
cle providers; in Scenario II, joins with two of the five
collections could only be executed at one specific cycle
provider. Table 1 summarizes the results. Even though the
meta-database of the lookup service is very small, most of
the time is consumed in the lookup step; the reason is that
twelve search requests are required for this query and the
overhead of each search request is very high; clearly, we
need to tune this in future work. The optimization time is
acceptable in this experiment (< 1 sec). The optimization
time is much lower for Scenario II than for Scenario I be-
cause the search space is much smaller for Scenario II due
to the authorization restrictions.



ObjectGlobe: Ubiquitous Query Processing on the Internet 21

Total Lookup Time Avg. Time per Search Optimization Time

Scenario I 5.64 secs 0.47 secs 0.83 secs
Scenario II 5.64 secs 0.47 secs 0.07 secs

Table 1 Overheads of Plan Generation

0

100

200

300

400

500

600

0 5 10 15 20

tim
e 

(s
ec

)

daytime

central
distributed

Fig. 22 Centralized versus Distributed Execution of Plans

6.2 Query Execution Times

6.2.1 Benefits of Operator MobilityThe following ex-
periment shows the benefits of ObjectGlobe’s ability to
execute query operators near data sources. We measured
the execution time of a query which determines the hotel
in Berlin with the greatest number of hotel rooms. The in-
formation about hotels is gathered from two Internet sites
namely HotelBook (www.hotelbook.com ) and Hotel-
Guide (www.hotelguide.com ). To perform this task
wrappers were used which first query a list of all hotels
in a given city and afterwards query detailed information
for every single hotel in this list; according to the query
capabilities of the data sources. We measured two differ-
ent plans for this query, which structurally correspond to
the plans shown in Figure 4 and Figure 5, except that we
use a group operator instead of a nearest neighbor opera-
tor. The traditional one is to execute the wrappers at the
client in Passau, the other one which is made available by
ObjectGlobe is to execute the wrappers and intermediate
group operators at a cycle provider near the data sources.
Because it is impossible to execute the wrapper at the hosts
serving HotelBook or HotelGuide, we used a host in Mary-
land for this experiment.

We executed these two plans every two hours in a 24
hour range and as the results in Figure 22 show that there
is a clear benefit if the wrappers are executed near the data
sources, i.e., at a cycle provider with a good network con-
nection to the data sources. Therefore the latency time is
reduced when the wrapper iteratively accesses the Hotel-
Book or the HotelGuide database. This experiment does
not demonstrate how parallelism can be used to speed up

query execution, because the network costs dominated the
CPU costs by far, but performance gains from parallelism
can also be achieved with ObjectGlobe.

6.2.2 Costs of Secure CommunicationThe use of SSL
sockets [FKK96] and therewith encryption and Message
Authentication Codes (MACs) is an effective way to in-
tegrate secure communication into a distributed system.
But cryptographic algorithms have additional costs when
transmitting data across a network. To demonstrate this ef-
fect we executed a simple scan-display plan and varied
sites of the scan operator and the usage of SSL. In all
cases the scan operator had to process 10 MB of data. As
Table 2 illustrates, costs for encryption and MAC calcu-
lation can be neglected in a WAN environment. The first
column contains information about where the scan and the
display operators were executed4 and across what kind of
network the data was sent. The remaining three columns
list the times of query executions where the data was not
encrypted and no MAC was calculated (plain), where only
a MAC was calculated (SHA) and where both, encryp-
tion and MAC calculation, were done (IDEA + SHA). The
first row shows that secure communication increases the
query execution time in LAN environments (but the over-
all execution time is even with fully secured communica-
tion much faster than query executions in a WAN envi-
ronment with unsecure communication). The second row
shows that in a WAN environment there is no significant
time difference between secure and insecure query execu-
tion because costs for cryptographic algorithms are CPU
costs and are superimposed by communication costs.

6.2.3 Costs of Dynamic ExtensibilityOne of the promi-
nent features of ObjectGlobe is its dynamic extensibility
by external operators. There are of course additional costs
caused by loading classes from the network and the separa-
tion of name spaces of different queries compared to load-
ing locally available built-in operators. This separation of
name spaces is achieved by using an individual OGClass-
Loader for every query and it forbids the caching of Class
objects for external operators. Instead, only the bytecode
(rather than the instantiated class object) of an external op-
erator can be cached and this bytecode is cached in a sep-
arate ClassFileCache. To measure the overheads of load-
ing an operator from a remote site and from the ClassFile-

4 X → Y means that the scan operator was executed at host X
and the display operator was executed on host Y.



22 R. Braumandl et al.

plain SHA IDEA + SHA

scan[Passau→ Passau], 100 MBit LAN 3.54 secs 5.31 secs 11.86 secs
scan[Mannheim→ Passau], WAN 81.93 secs 81.86 secs 82.04 secs

Table 2 Costs of Secure Communication in Different Network Environments

Cache, we loaded built-in and external operators of differ-
ent size stored at different locations using our OGClass-
Loader: built-in operators from disk and external operators
from a local function provider in Passau and a remote func-
tion provider in Maryland. For external operators, we mea-
sure three scenarios: (a) the bytecode is not cached at all;
(b) the bytecode is cached in the ClassFileCache; (c) the
operator is cached as a class object internally in the OG-
ClassLoader. Scenario (c) is used as a baseline and simu-
lates the behavior of a system without security measures.
Figure 23 shows the following effects:

– The costs for the initial loading of a class from disk
or network are very high (the +-lines in Figure 23) but
can be heavily reduced by caching the class object of
built-in operators or caching the bytecode of external
operators (the triangle lines).

– Comparing the×-lines (Scenario (c)) and triangle lines
(Scenario (b)), we see that the overheads to ensure se-
curity are relatively high; compared to the overall costs
of query processing on the Internet, however, the over-
heads for security can usually be neglected (less than a
second in all cases).

7 Conclusion

We presented the design of ObjectGlobe, an open, dis-
tributed and secure query processing system. The goal of
ObjectGlobe is to establish an open marketplace in which
data, function, and cycle providers canoffer/selltheir ser-
vices, following some business model which can be im-
plemented on top of ObjectGlobe. End users and applica-
tions can use these services with only little overhead. We
gave details of the ObjectGlobe lookup service, the query
parser and optimizer, and the runtime system. For each
component, we showed the necessary adjustments in or-
der to produce valid plans and guarantee security and QoS
at execution time.

The project started about three years ago. An earlier
version of this paper was presented on the workshop for
e-services [BKK+00] and a first demo was given at SIG-
MOD 99 [BKK99]. This demo involves twohotelservers
(i.e., HotelGuide, located in Switzerland, and HotelBook,
located in the USA), a server with images of tourist at-
tractions (located in Germany), a German server withcity
information, and the server of the German railways with
all German train connections. This demo (available on our

Web site) can be seen as a simplified e-commerce platform
for travel agencies.

Our current implementation is able to run the com-
plete parse – optimize – plug – execute process automat-
ically given a declarative query. While some of the Ob-
jectGlobe components are already quite sophisticated and
highly tuned, work on other components, for example, the
QoS component, is still in progress and we also need to
do some fine tuning regarding the interaction of differ-
ent components. For example, we would like to reduce the
number of queries that the lookup service needs to process
during parsing. Furthermore, we would like to build data
caches for ObjectGlobe. Besides the work on meta-data
management, optimization and QoS, we recently started
another project on security and dependability in the Ob-
jectGlobe context. The focus is on (1) runtime resource
controlling in order to detect and combat denial of ser-
vice attacks—and (2) semi-automatic quality assessment
of external query operators—e.g., by data flow analysis,
automatic stress testing, etc. In an upcoming cooperation
project we are building a more generic e-commerce appli-
cation framework that uses ObjectGlobe as the enabling
technology to construct scalable and open virtual market-
places.

References

[BCV99] S. Bergamaschi, S. Castano, and M. Vincini. Se-
mantic integration of semistructured and structured
data sources.ACM SIGMOD Record, 28(1):54–59,
March 1999.

[BG99] D. Brickley and R. V. Guha. Resource
Description Framework (RDF) schema
specification. Proposed Recommenda-
tion http://www.w3.org/TR/PR-rdf-
schema , WWW-Consortium, March 1999.

[BJS99] E. Bertino, S. Jajodia, and P. Samarati. A flexible
authorization mechanism for relational data man-
agement systems.ACM Transactions on Informa-
tion Systems, 17(2):101–140, 1999.

[BKK99] R. Braumandl, A. Kemper, and D. Kossmann.
Database patchwork on the Internet (project demo
description). In SIGMOD [SIG99], pages 550–552.

[BKK +00] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann,
A. Kreutz, S. Pr¨ols, S. Seltzsam, and K. Stocker.
ObjectGlobe: Ubiquitous query processing on the
Internet. In Workshop on Technologies for E-
Services, Cairo, Egypt, September 2000.



ObjectGlobe: Ubiquitous Query Processing on the Internet 23

0.001

0.01

0.1

1

10

100

1000

10000

10 50 100

tim
e 

[m
s]

size of class file [1000 byte]

class not cached
class cached by internal classloader
class cached by the OGClassLoader

a) Built-In Operator

0.001

0.01

0.1

1

10

100

1000

10000

10 50 100

tim
e 

[m
s]

size of class file [1000 byte]

class not cached 
class cached by ClassFileCache
class cached by OGClassLoader

b) Ext. Op./Local Prov.

0.001

0.01

0.1

1

10

100

1000

10000

10 50 100

tim
e 

[m
s]

size of class file [1000 byte]

class not cached 
class cached by ClassFileCache
class cached by OGClassLoader

c) Ext. Op./Remote Prov.

Fig. 23 Costs of Loading an Operator by the ObjectGlobe Class Loader

[BKK01] R. Braumandl, A. Kemper, and D. Kossmann.
Quality of service in an information economy.
2001. Submitted for publication.

[C+95] M. Carey et al. Towards heterogeneous multimedia
information systems. InProc. of the Intl. Workshop
on Research Issues in Data Engineering, pages
124–131, March 1995.

[CCI88] CCITT International Telegraph and Telephone
Consultative Committee. The Directory. Technical
Report Recommendations X.500, X.501, X.509,
X.511, X.518-X.521, CCITT, 1988.

[CD99] L. Cardelli and R. Davies. Service combinators
for Web computing. IEEE Trans. Software Eng.,
25(3):309–316, May 1999.

[CDF+94] M. Carey, D. DeWitt, M. Franklin, N. Hall,
M. McAuliffe, J. Naughton, D. Schuh,
M. Solomon, C. Tan, O. Tsatalos, S. White, and
M. Zwilling. Shoring up persistent applications. In
Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 383–394, Minneapolis, MI, USA,
May 1994.

[CK98] M. Carey and D. Kossmann. Reducing the brak-
ing distance of an SQL query engine. InProc. of
the Conf. on Very Large Data Bases (VLDB), pages
158–169, New York, USA, August 1998.

[CS96] S. Chaudhuri and K. Shim. Optimization of queries
with user-defined predicates. In VLDB [VLD96],
pages 87–98.

[CZH+99] S. Czerwinsky, B. Zhao, T. Hodes, A. Joseph, and
R. H. Katz. An architecture for a secure service dis-
covery service. InProc. of ACM MOBICOM Con-
ference, pages 24–35, Seattle, WA, August 1999.

[DA99] T. Dierks and C. Allen. The TLS Protocol Ver-
sion 1.0. ftp://ftp.isi.edu/in-notes/
rfc2246.txt , January 1999.

[FFK+98] M. Fernandez, D. Florescu, J. Kang, A. Levy, and
D. Suciu. Catching the boat with Strudel: experi-
ences with a web-site management system. In SIG-
MOD [SIG98], pages 414–425.

[FJK96] M. Franklin, B. J´onsson, and D. Kossmann. Perfor-
mance tradeoffs for client-server query processing.
In Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 149–160, Montreal, Canada,
June 1996.

[FK99] D. Florescu and D. Kossmann. Storing and query-
ing XML data using an RDBMS.IEEE Data En-
geneering Bulletin, 22(3):27–34, September 1999.

[FKK96] A. Frier, P. Karlton, and P. Kocher. The SSL
3.0 Protocol. Netscape Communications Corp.,
http://home.netscape.com/eng/ssl3 ,
November 1996.

[GHK92] S. Ganguly, W. Hasan, and R. Krishnamurthy.
Query optimization for parallel execution. InProc.
of the ACM SIGMOD Conf. on Management of
Data, pages 9–18, San Diego, CA, USA, June
1992.

[GHR97] A. Gupta, V. Harinarayan, and A. Rajaraman. Vir-
tual data technology. ACM SIGMOD Record,
26(4):57–61, December 1997.

[GMSvE98] M. Godfrey, T. Mayr, P. Seshadri, and T. v. Eicken.
Secure and portable database extensibility. In SIG-
MOD [SIG98], pages 390–401.

[Gra93] G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73–
170, June 1993.

[Gur00] G. Gurden. Financial Prod-
ucts Markup Language (FpML).
http://www.fpml.org/spec/fpml-1-0 ,
September 2000.

[GWBC99] S. Gribble, M. Welsh, E. Brewer, and D. Culler.
The MultiSpace: an evolutionary platform for in-
frastructural services. InProc. of the Usenix Annual
Technical Conference, Monterey, CA, June 1999.

[HCL+90] L. M. Haas, W. Chang, G. M. Lohman, J. McPher-
son, P. F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh,
M. J. Carey, and E. Shekita. Starburst mid-flight:
As the dust clears.IEEE Transactions on Knowl-
edge and Data Engineering, 2(1):143–160, March
1990.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. In-
ternet X.509 Public Key Infrastructure Certificate
and CRL Profile.http://www.rfc-editor.
org/rfc/rfc2459.txt , January 1999.

[HKWY97] L. Haas, D. Kossmann, E. Wimmers, and J. Yang.
Optimizing queries across diverse data sources. In
VLDB [VLD97], pages 276–285.

[HPI99] Hewlett Packard Inc. Chai: Internet business solu-
tions. http://www.chai.hp.com/ , 1999.



24 R. Braumandl et al.

[IEE00] Special issue on adaptive query processing. IEEE
Data Engineering Bulletin, Vol 23, No 2, June
2000.

[IFF+99] Z. Ives, D. Florescu, M. Friedman, A. Levy, and
D. Weld. An adaptive query execution engine for
data integration. In SIGMOD [SIG99], pages 299–
310.

[JKR99] V. Josifovski, T. Katchaounov, and T. Risch. Opti-
mizing queries in distributed and composable me-
diators. InProc. of the IECIS International Con-
ference on Cooperative Information Systems, pages
291 – 302, Edinburgh, Scotland, 1999.

[JR99] Vanja Josifovski and Tore Risch. Integrating het-
erogenous overlapping databases through object-
oriented transformations. In VLDB [VLD99],
pages 435–446.

[KKKK01] M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann.
Distributed Metadata Management on the Internet.
2001. In preparation.

[Kos01] D. Kossmann. The state of the art in distributed
query processing.ACM Computing Surveys, 2001.
Accepted for publication. To appear.

[Kri98] N. Krivokapić. Control mechanisms in distributed
object bases: Synchronization, deadlock detection,
migration, volume 54 ofDissertationen zu Daten-
banken und Informationssystemen. infix-Verlag,
Ringstr. 32, 53757 Sankt Augustin, 1998. ISBN:
3-89601-454-4, Dissertation, Universit¨at Passau,
Germany.

[KS98] D. Konopnicki and O. Shmueli. Information gath-
ering in the world wide web: The W3QL query
languge and the W3QS system.ACM Trans.
on Database Systems, 23(4):369–410, December
1998.

[KS00] D. Kossmann and K. Stocker. Iterative dynamic
programming: A new class of query optimization
algorithms. ACM Trans. on Database Systems,
25(1):43–82, March 2000.

[LRO96] A. Levy, A. Rajaraman, and J. Ordille. Querying
heterogeneous information sources using source
descriptions. In VLDB [VLD96], pages 251–262.

[MMM97] A. O. Mendelzon, G. A. Mihaila, and T. Milo.
Querying the World Wide Web.Int. Journal on
Digital Libraries, 1(1):54–67, 1997.

[MRT98] G. A. Mihaila, L. Raschid, and A. Tomasic. Equal
time for data on the Internet with WebSemantics.
In Proc. of the Intl. Conf. on Extending Database
Technology (EDBT), volume 1377 ofLecture Notes
in Computer Science (LNCS), pages 87–101, Va-
lencia, Spain, March 1998. Springer-Verlag.

[MZ95] T. J. Mowbray and R. Zahavi.The Essential Corba
– Systems Integration Using Distributed Objects.
John Wiley & Sons, Chichester, UK, 1995.

[Oak98] S. Oaks. Java Security. O’Reilly & Associates,
Sebastopol, CA, USA, 1998.

[Pet99] J. Petit. Real Estate DTD.
http://www.4thworldtele.com , May
1999.

[PGGMU95] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina,
and J. Ullman. A query tranlation scheme for

rapid implementation of wrappers. InProc. of
the Conf. on Deductive and Object-Oriented
Databases (DOOD), pages 161–186, December
1995.

[PKI] Public-Key Infrastructure (X.509) (PKIX).http:
//www.ietf.org/html.charters/
pkix-charter.html .

[RBKW91] F. Rabitti, E. Bertino, W. Kim, and D. Woelk.
A model of authorization for next-generation
database systems.ACM Trans. on Database Sys-
tems, 16(1):88–131, March 1991.

[ROH99] M. Tork Roth, F. Ozcan, and L. Haas. Cost mod-
els DO matter: Providing cost information for di-
verse data sources in a federated system. In VLDB
[VLD99], pages 599–610.

[RS97] M. Tork Roth and P. Schwarz. Don’t scrap it, wrap
it! A wrapper architecture for legacy data sources.
In VLDB [VLD97], pages 266–275.

[RSA99] RSA Laboratories. PKCS #5 v2.0:
Password-Based Cryptography Standard.
ftp://ftp.rsasecurity.com/pub/
pkcs/pkcs-5v2/pkcs5v2-0.pdf , March
1999.

[SAL+96] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer,
A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A
wide-area distributed database system.The VLDB
Journal, 5(1):48–63, January 1996.

[SAP99] SAP. Business networking in the Internet
age. Technical report, SAP White Paper,
September 1999. http://www.sap-
ag.de/germany/products/my-
sap/pdf/bus networking.pdf .

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and
C. E. Youman. Role-based access control models.
IEEE Computer, 29(2):38–47, 1996.

[SIG98] Proc. of the ACM SIGMOD Conf. on Management
of Data, Seattle, WA, USA, June 1998.

[SIG99] Proc. of the ACM SIGMOD Conf. on Management
of Data, Philadelphia, PA, USA, June 1999.

[SL90] A. Sheth and J. Larson. Federated database sys-
tems for managing distributed, heterogeneous, and
autonmous databases.ACM Computing Surveys,
22(3):183–236, September 1990.

[SLR97] P. Seshadri, M. Livny, and R. Ramakrishnan. The
case for enhanced abstract data types. In VLDB
[VLD97], pages 66–75.

[SR86] M. Stonebraker and L. Rowe. The design of POST-
GRES. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 340–355, Washington,
USA, June 1986.

[Sun99] Sun Microsystems, http://java.sun.
com/products/jdk/1.2/docs/guide/
jvmpi/index.html . Java Virtual Machine
Profiler Interface (JVMPI), 1999.

[TLS] Transport Layer Security (TLS). http:
//www.ietf.org/html.charters/
tls-charter.html .

[TRV98] A. Tomasic, L. Raschid, and P. Valduriez. Scaling
acccess to distributed heterogeneous data sources



ObjectGlobe: Ubiquitous Query Processing on the Internet 25

with DISCO. IEEE Trans. Knowledge and Data
Engineering, 10(5):808–823, October 1998.

[UDD00] Universal Description, Discovery and Integration
(UDDI) technical white paper. White Paper, Ariba,
Inc., IBM Corp., and Microsoft Corp., September
2000.http://www.uddi.org/ .

[VLD96] Proc. of the Conf. on Very Large Data Bases
(VLDB), Bombay, India, September 1996.

[VLD97] Proc. of the Conf. on Very Large Data Bases
(VLDB), Athens, Greece, August 1997.

[VLD99] Proc. of the Conf. on Very Large Data Bases
(VLDB), Edinburgh, GB, September 1999.

[Wal99] J. Waldo. The Jini Architecture for Network-
centric Computing.Communications of the ACM,
42(7):76–82, 1999.

[WHK97] M. Wahl, T. Howes, and S. Kille.
Lightweight Directory Access Proto-
col (v3). ftp://ftp.isi.edu/in-
notes/rfc2251.txt , December 1997.



26 R. Braumandl et al.

A The XML Representation of a Query Execution Plan

<?xml version="1.0" encoding=’ISO-8859-1’?>

<plan>
<iterator id="display" code="iterators.display" cycle-provider="client">

<iterator id="join1" code="iterators.NestedLoops"
cycle-provider="client">

<predicate>Sb = Tb</predicate>
<iterator id="join2" code="iterators.NestedLoops"

cycle-provider="alpha">
<predicate>Ra = Sa</predicate>
<iterator id="tbscanR" code="iterators.TbScan" cycle-provider="alpha">

<partition>R</partition>
</iterator>
<iterator id="wrapperS" code="wrapper.wrap_S"

codebase="functionProvider" cycle-provider="alpha">
</iterator>

</iterator>
<iterator id="thumb1" code="thumbnail" codebase="functionProvider"

cycle-provider="beta">
<toThumbNail>picture</toThumbNail>
<iterator id="tbscanT" code="iterators.TbScan" cycle-provider="beta">

<partition>T</partition>
</iterator>

</iterator>
</iterator>

</iterator>

<provider-information>
<og-provider id="client">

<dn-name>C=DE, O=University of Passau, OU=Department
for Mathematics and Computer Science,
CN=Mets.fmi.uni-passau.de

</dn-name>
<host-dns>Mets.fmi.uni-passau.de</host-dns>

</og-provider>
<og-provider id="alpha">

<dn-name>C=COM, O=A Incorporated, OU=Computing Center,
CN=alpha.A.com

</dn-name>
<host-dns>alpha.A.com</host-dns>

</og-provider>
<og-provider id="beta">

<dn-name>C=COM, O=B Incorporated, OU=Computing Center,
CN=beta.B.com

</dn-name>
<host-dns>beta.B.com</host-dns>

</og-provider>
<og-provider id="functionProvider">

<dn-name>C=COM, O=FctProv Incorporated, OU=Software Development,
CN=FctProv.com

</dn-name>
<code-location>http://www.FctProv.com/forGlobalUse</code-location>

</og-provider>
</provider-information>

</plan>



ObjectGlobe: Ubiquitous Query Processing on the Internet 27

B The RDF Registration Code for a Collection

In the sample RDF-description shown below, the relevant information about a data provider can be found
enclosed in theDataProvider element. It contains information about the name of the provider and a
URL with which the data provider can be contacted. ThePartition element contains information about
a collection that the data provider makes available.
At the beginning of the collection description we can find the data provider of the collection, a plain-text de-
scription of the content of the collection, the theme (i.e., HotelTheme) this collection is associated with, etc.
The elementwrapper specifies a reference for the wrapper which performs the necessary transformations
to integrate the collection into an ObjectGlobe system. More interesting is the content of theattributes
element. It contains the description of the type of the tuples, given by the collection. In our case the type
contains three attributes and for each attribute the name and the type of the attribute are specified. It is
possible to insert additional information about attributes which is omitted for brevity.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://www.db.fmi.uni-passau.de/˜objglobe/ObjectGlobe-Metaschema.rdf#">

<DataProvider rdf:ID="HotelBook">
<dataProviderName>HotelBook</dataProviderName>
<dataProviderUrl>http://www.hotelbook.com</dataProviderUrl>

</DataProvider>

<Partition rdf:ID="HotelBookPartition">
<dataProvider rdf:resource="#HotelBook"/>
<partitionDescription>Description of hotels worldwide</partitionDescription>
<theme rdf:resource="file:/home/objglobe/Themes.rdf#HotelTheme"/>
<localName>hotelBookPartition</localName>
<wrapper rdf:resource="file:/home/objglobe/Operators.rdf#HotelBookWrapper"/>
<uniqueID>4711</uniqueID>
<cardinality>30000</cardinality>

<attributes>
<rdf:Bag>

<rdf:li><Attribute>
<topic rdf:resource="file:/home/objglobe/Themes.rdf#cityTopic" />
<domain rdf:resource="file:/home/objglobe/Themes.rdf#StringDomain" />

</Attribute></rdf:li>
<rdf:li><Attribute>

<topic rdf:resource="file:/home/objglobe/Themes.rdf#addressTopic" />
<domain rdf:resource="file:/home/objglobe/Themes.rdf#StringDomain" />

</Attribute></rdf:li>
<rdf:li><Attribute>

<topic rdf:resource="file:/home/objglobe/Themes.rdf#priceTopic" />
<domain rdf:resource="file:/home/objglobe/Themes.rdf#IntegerDomain" />

</Attribute></rdf:li>
</rdf:Bag>

</attributes>
</Partition>
</rdf:RDF>


