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Abstract

The emergence of electronic marketplaces and other
electronic services and applications on the Internet is
creating a growing demand for effective management
of resources. Due to the nature of the Internet such
information changes rapidly. Furthermore, such infor-
mation must be available for a large number of users
and applications, and copies of pieces of information
should be stored near the users that need this particular
information. In this paper, we present the architecture
of MDV, a distributed metadata management system.
MDV has a 3-tier architecture and supports caching
and replication in the middle-tier so that queries can
be evaluated locally. Users and applications specify the
information they need and that is replicated using a spe-
cialized subscription language. In order to keep replicas
up-to-date and initiate the replication of new and rel-
evant information, MDV implements a novel, scalable
publish & subscribe algorithm. We describe this algo-
rithm in detail, show how it can be implemented using
a standard relational database system, and present the
results of performance experiments conducted using our
prototype implementation.

1 Introduction

Nowadays, the Web is one of the main driving forces
behind the development of new and innovative appli-
cations. The emergence of electronic marketplaces and
other electronic services and applications on the Inter-
net is creating a growing demand for effective manage-
ment of resources. Dynamic composition of such web
services requires extensive metadata for the description,
administration, and discovery of these services. Due
to the nature of the Internet such information changes
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rapidly. Furthermore, such information must be avail-
able for a large number of users and applications, and
copies of pieces of information should be stored near
the users that need this particular information. Thus,
metadata about such resources and services is a key to
the success of these services.

In this paper, we present the architecture of the
MDV system, a distributed metadata management sys-
tem. MDV has a 3-tier architecture and supports
caching and replication in the middle-tier so that
queries can be evaluated locally, i.e., no expensive com-
munication across the Internet is necessary. This sup-
ports fast discovery of metadata which is, e.g., necessary
in web service composition or query optimization. Users
and applications specify the information they need and
that is replicated using a specialized subscription lan-
guage. This reduces the amount of data that has to
be queried locally resulting in a better query execution
performance.

MDV implements a novel, scalable publish & sub-
scribe algorithm to keep replicas up-to-date and ini-
tiate the replication of new and relevant information.
Although the algorithm is described in the context of
RDF [20] and MDV’s subscription language it is also ap-
plicable to, e.g., XML [6] and the XQuery language [8],
a direction which we are currently investigating. We
describe this algorithm in detail, especially how it deals
with the possibly huge set of subscription rules. We
show how the algorithm can be implemented using a
standard relational database system thereby taking ad-
vantage of their matured storing, indexing, and query-
ing abilities.

The MDV system was developed as part of our Ob-
jectGlobe project, an open and distributed query pro-
cessing system for data processing services on the In-
ternet. Therefore, we use ObjectGlobe as an example
client of MDV. The goal of the ObjectGlobe project
is to distribute query processing capabilities (includ-
ing those found in traditional database systems) across



the Internet. The idea is to create an open market
place for three kinds of suppliers: data providers sup-
ply data, function providers offer query operators to
process the data, and cycle providers are contracted to
execute query operators. For a detailed description of
the ObjectGlobe system see [5].

The remainder of this paper is structured as follows:
Section 2 presents the MDV system, its architecture,
and core components. Section 3 describes our publish
& subscribe algorithm, particularly the filter algorithm.
Performance experiments conducted using our proto-
type implementation are presented in Section 4. Sec-
tion 5 discusses some related work and Section 6 con-
cludes this paper.

2 Overview of the MDV System

In this section, we describe the architecture of the
MDV metadata management system and give a general
overview of the system’s components. Main features
of our system are a 3-tier architecture that eases the
adjustment to varying workloads and activity hot spots,
efficient metadata access using caching, and a publish &
subscribe mechanism for preserving cache consistency.
MDV uses RDF [20] as its data model (using the XML
syntax for documents) and RDF Schema [7] to define
the schema the RDF metadata must conform to.

2.1 An example

Figure 1 shows an excerpt from an RDF document
doc.rdf. The excerpt defines two resources: a Cy-
cleProvider and a ServerInformation. The former is
a server on the Internet capable of executing arbitrary
ObjectGlobe services, the latter contains information
about the computer running the provider. The rdf:ID
property defines a local identifier for each resource, host
and info in the example. A unique identifier, called
URI reference, is constructed by combining the local
identifier of a resource with the (globally unique) URI
associated with an RDF document. The CycleProvider
resource contains three further properties: serverHost
which contains the server’s DNS name, serverPort
which contains the provider’s port, and serverInfor-
mation which is a reference to the ServerInformation
resource storing data about the computer running the
provider. It contains the size of the computer’s main
memory in MB (property memory) and the speed of its
CPU in MHz (property cpu). Properties (like serverIn-
formation) always reference resources using their URI
reference, i.e., RDF does not distinguish between nested
and referenced resources. So it is irrelevant if resources
are defined as nested elements (as in Figure 1) or some-
where else in the same or even in another document.

<CycleProvider rdf:ID="host">

<serverHost>pirates.uni-passau.de</serverHost>

<serverPort>5874</serverPort>

<serverInformation>

<ServerInformation rdf:ID="info" memory="92"

cpu="600" />

</serverInformation>

</CycleProvider>

Figure 1. Excerpt: MDV RDF document

2.2 Architecture Overview

Figure 2 depicts the MDV system’s 3-tier architec-
ture, consisting of Metadata Providers, Local Metadata
Repositories, and MDV clients.

Metadata Providers (MDPs), referred to as (MDV)
backbone, are distributed all over the Internet to provide
a uniform access regarding network latency and meta-
data content. MDPs accomplish the latter by sharing
the same schema and consistently replicating metadata
among each other. Basically, the backbone is an exten-
sion of a distributed DBMS with a flat hierarchy, full
synchronization, and replication.1 All metadata stored
at MDPs is regarded as global and publicly available.

Local Metadata Repositories (LMRs) are the compo-
nents of the MDV system that do the actual metadata
query processing. For efficiency reasons, i.e., to avoid
communication across the Internet, LMRs cache global
metadata and use only locally available metadata for
query processing. Consequently, LMRs should be run-
ning close to the applications querying the metadata,
e.g., in the same LAN. The cache of an LMR should
contain relevant metadata, appropriate to the users or
applications using it. LMRs use a publish & subscribe
mechanism to fetch relevant metadata from an MDP
and to receive updates to their data, that is, to keep
their caches consistent. When subscribing to an MDP
an LMR registers a set of subscription rules which de-
fine the parts of the MDP’s metadata the LMR wants to
cache. MDPs use subscription rules to publish updates,
insertions, or deletions in the metadata to LMRs. In ad-
dition to global metadata, LMRs store local metadata
that should not be accessible to the public and there-
fore is not forwarded to the backbone. Local metadata
must be explicitly marked as such at registration time.

Applications and users accessing the MDV system
are referred to as MDV clients. MDV clients can query
metadata at an LMR using MDV’s (declarative) query
language which is not presented because of paper length
limitations. It is quite similar to the rule language that

1A more sophisticated distributed architecture regarding par-
titioning and replication is possible in the backbone. But this is
not the focus of our work. Work on partitioning and replication
for distributed database systems is described in [24].
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Figure 2. Overview of MDV’s Architecture

is explained in Section 2.3. Real users can also browse
metadata at an MDP (as depicted in Figure 2) and se-
lect it for caching. Their LMR will generate appropriate
rules and update its set of subscription rules.

Metadata administration, i.e., registering new meta-
data and updating or deleting old metadata, is done
at MDPs. New metadata must be registered within
a valid RDF document; updating metadata essentially
means re-registering a modified version of an already
registered document. Deleting can be done either by
removing parts from a document and updating it or by
removing the complete document with all its content.
This is the only way to add, update, or delete metadata.
MDV’s query language does not provide any update or
delete functionality.

MDV is implemented in Java, so that it is portable
which allows installation with very little effort, and
it uses a relational database management system
(RDBMS) as basic data storage. RDF documents are
mapped to tables as described in [14]. Search requests
are translated into SQL join queries. This translation
is not one-to-one as MDV hides the details of how the
metadata is stored. Translating search requests into
SQL queries is quite complicated (albeit straightfor-
ward) and describing all the details is beyond the scope
of this paper.

2.3 The Rule System

Subscription rules are specified by users browsing
and selecting metadata or by administrators of LMRs.
Rules must describe the kind of metadata that local
MDV clients are interested in because only metadata
matching the rules is cached locally and used for meta-
data query evaluation. Currently MDV uses a propri-

etary rule language which supports path expressions
and joins. A rule is (informally) defined using the fol-
lowing SQL-like syntax:
search Extension e register e where Predicates(e)

This rule matches or registers all resources e that are an
element of extension Extension—which is either some
class defined in the schema or another subscription
rule— and that satisfy the rule’s where part. Pred-
icates is a conjunction of elementary predicates where
each is of the form X ◦Y with X and Y either constants
or valid path expressions (according to the schema) and
◦ ∈ { =, ! =, <, <=, >, >=, contains}. MDV provides
a special any operator ? that can be applied to set-
valued properties.2 Currently our implementation does
not support an or operator, but rules containing it can
be split up easily into rules without it using the algebra
of logic and negated operators.

Example 1 The following rule subscribes to all re-
sources that are an instance of class CycleProvider,
which must be defined in the schema, and that have a
property serverHost that contains ’uni-passsau.de’ and
a serverInformation property that references a Server-
Information resource with a memory property value
greater than 64:

search CycleProvider c
register c
where c.serverHost contains ’uni-passau.de’

and c.serverInformation.memory > 64

So, this rule subscribes to all cycle providers that run
on computers in the ’uni-passau.de’ domain with more

2With set-valued properties all set elements must have the
same type, even though RDF does not formally enforce this.
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Figure 3. Basic Idea of the Filter Algorithm

than 64MB of main memory. For example, the Cy-
cleProvider resource defined in the document excerpt
of Figure 1 matches this rule.

2.4 References

Example 1 shows one problem: The rule, applied
to the metadata of Figure 1, will register the Cy-
cleProvider resource with reference host and transmit
it to an LMR. But obviously the referenced ServerInfor-
mation resource must be transmitted, too. Otherwise,
the CycleProvider resource will contain a dangling ref-
erence. So, what to do with referenced resources? Pos-
sible solutions are a) to never transmit them with a
resource, b) to follow all references until no new refer-
ences are found (i.e., calculating the closure), or c) to do
something in between. The first two solutions both have
major drawbacks, ranging from dangling references to a
possible transmission of the complete database. There-
fore, we chose to introduce strong and weak references.
Resources referenced by the former are always trans-
mitted together with the referencing resource whereas
resources referenced by the latter type are never trans-
mitted. MDV augments RDF schema with the neces-
sary RDF properties to allow the definition of strong
and weak references. The decision which references are
strong and which are weak is part of the schema design
and therefore the according designer carries the respon-
sibility for defining them.

With strong references an LMR can receive resources
where there is no corresponding rule for. An LMR must
take care for deleting such resources if the resource that
caused their transmission is deleted, e.g., because the
according rule is changed or removed. MDV uses a
garbage collector (based on reference counting) to de-
tect such resources and to remove them if necessary.

3 The Publish & Subscribe Algorithm

In this section, we describe our publish & subscribe
algorithm, particularly one of its core components, the

filter algorithm. One of the main challenges in publish-
ing of data is the evaluation of subscription rules. The
evaluation is necessary to obtain all subscribers that
have to be notified of new, updated, or deleted data.
To avoid the evaluation of the possibly huge set of all
subscription rules our filter determines a (small) subset
of them that are at most affected by the modification
of the data. Additionally, our filter takes advantage of
rule/predicate redundancy and evaluates affected rules
incrementally, i.e., using only the modified data as far
as possible.

Our filter algorithm is solely based on standard rela-
tional database technology, mainly for the advantages
in robustness, scalability, and query abilities. We im-
plemented a prototype based on the MDV system, its
rule language, and the RDF data model.

3.1 Overview of the Approach

Consider the following rule that registers all cycle
providers (i.e., their resources) that are running in the
domain ’uni-passau.de’:
search CycleProvider c register c
where c.serverHost contains ’uni-passau.de’

This rule must be evaluated when a resource of class
CycleProvider is registered, updated, or deleted. The
following rule that registers all cycle providers that are
running on a computer with more than 64MB of mem-
ory shows that it is not that simple:
search CycleProvider c register c
where c.serverInformation.memory > 64

This rule must be evaluated not only when a Cy-
cleProvider resource is registered, updated, or deleted,
but also when the referenced ServerInformation re-
source is updated. For example, if the ServerInforma-
tion resource’s memory property is updated from 32
to 128, all CycleProvider resources referencing the up-
dated resource are afterwards matching the above rule.

Figure 3 illustrates the basic idea of our filter al-
gorithm. Both, documents and subscription rules are
decomposed into so-called atoms, i.e., basically tuples
of a table. For the former, an atom is basically an RDF



FilterData
uri reference class property value
doc.rdf#host CycleProvider rdf#subject doc.rdf#host
doc.rdf#host CycleProvider serverHost pirates.uni-passau.de
doc.rdf#host CycleProvider serverPort 5874
doc.rdf#host CycleProvider serverInformation doc.rdf#info
doc.rdf#info ServerInformation rdf#subject doc.rdf#info
doc.rdf#info ServerInformation memory 92
doc.rdf#info ServerInformation cpu 600

Figure 4. Table FilterData, based on the RDF document of Figure 1

statement (or triple, as described in [20]). For the lat-
ter, an atom is composed of the rule parts that refer to
a single class. The filter algorithm joins the document
atoms with the rule atoms obtained from the subscrip-
tion rule base to determine all rules that may register
resources of the document and, therefore, have to be
evaluated.

In summary, our publish & subscribe algorithm pro-
ceeds in three steps: 1) Newly registered documents
must be decomposed. 2) Newly registered rules must
be decomposed. 3) Document atoms and rule atoms
are matched and rules that may register new resources
are evaluated incrementally. We describe each of these
steps in the following subsections.

3.2 Decomposition of Documents

Any newly registered RDF document is decom-
posed into its atoms, i.e., RDF statements as described
in [20]. These statements and some additional informa-
tion (necessary for filter execution) are inserted into the
table FilterData (see Figure 4 for an example). Addi-
tionally, for each resource a tuple is inserted containing
the URI reference and the class name (with property
set to rdf#subject and value set to the resource’s URI
reference). Thus, rules are able to register a single re-
source using its URI reference.

3.3 Decomposition of Rules

To obtain the rule atoms a new subscription rule is
processed in three steps: First, the rule is normalized,
basically to ease decomposition. Afterwards, the nor-
malized rule is decomposed into so-called atomic rules.
Finally, a dependency tree is created based on informa-
tion obtained from the decomposition step and merged
with a global dependency graph. We distinguish two
types of atomic rules: A triggering rule refers to a sin-
gle class; it requires no results of other atomic rules and
contains no path expressions, i.e., it contains only ac-
cesses to properties. A join rule represents a join of two
extensions with a join predicate. It contains no other
predicates and it always depends on two other atomic
rules.

The normalization of rules is not crucial for the cor-
rectness of rule decomposition, but it eases its explana-
tion and implementation. We call a rule normalized if
its search part contains all classes that are used in its
where part, not only directly using a variable but also
in path expressions. Path expressions are not allowed
in normalized rules, only accesses to properties (includ-
ing the ? operator), and they are split up therefore. As
an example, we present the normalized form of the rule
from Example 1:
search CycleProvider c, ServerInformation s
register c
where c.serverHost contains ’uni-passau.de’

and c.serverInformation = s
and s.memory > 64

3.3.1 Rule Decomposition

The decomposition of a subscription rule into atomic
rules is done based on the predicates used in it: In a
first step, all predicates with a constant are removed
from the original rule and for each of them a trigger-
ing rule is created with the predicate as where part,
i.e., the triggering rule matches all resources that sat-
isfy the predicate. If there are classes in the search
clause without such a predicate, a triggering rule with-
out where clause is created. After this, the original rule
is adjusted to use the results of the triggering rules as
input instead of evaluating the removed predicates. As
an example, consider the (normalized) rule
search CycleProvider c, ServerInformation s
register c
where c.serverHost contains ’uni-passau.de’

and c.serverInformation = s
and s.memory > 64 and s.cpu > 500

All predicates with constants are considered and appro-
priate triggering rules are generated:
search ServerInformation s register s
where s.memory > 64 (RuleA)

search ServerInformation s register s
where s.cpu > 500 (RuleB)

search CycleProvider c register c
where c.serverHost contains ’uni-passau.de’ (RuleC)

The original rule is adjusted afterwards:
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search RuleA a, RuleB b, RuleC c register c
where a = b and c.serverInformation = a (RuleD)

Note, that a rule’s type is the type of the resources
it registers, e.g., the type of RuleD is CycleProvider.
All remaining predicates in the original rule are join
predicates. Now, subsequently each such predicate is
removed and a join rule is created with the removed
predicate in its where part. The original rule is again
adjusted. This is done until the original rule is itself a
join rule. In our example, two join rules are generated:
search RuleA a, RuleB b register a
where a = b (RuleE)

search RuleE a, RuleC c register c
where c.serverInformation = a (RuleF)

The subscription rule is now decomposed into the
atomic rules RuleA, RuleB, RuleC, RuleE, and RuleF.

3.3.2 Creation of the Dependency Graph

The decomposition always creates non-cyclic dependen-
cies between the generated atomic rules. These depen-
dencies are represented in a dependency tree in which
nodes represent atomic rules and directed edges repre-
sent dependencies. The tree contains an end rule (an
atomic rule that produces the result of the subscription
rule) as root node, one or more triggering rules as leave
nodes, and join rules as inner nodes. Figure 5 depicts
a dependency tree that is based on the atomic rules in
Section 3.3.1.

After decomposition the generated atomic rules are
merged with already existing atomic rules (stemming
from previously registered rules). This is equivalent to
merging the dependency tree of the newly registered
rule with the global dependency graph which is a di-
rected, acyclic graph that consists of the merged depen-
dency trees of previously registered rules. By merging
dependency trees the filter algorithm takes advantage of

rule and predicate redundancy and, as a consequence,
evaluates equivalent rules and atomic rules only once.

3.3.3 Rule Groups

Although the decomposition algorithm already consid-
ers redundancies, there remain similar atomic rules.
Consider the following example:
search CycleProvider c register c
where c.serverInformation.memory > 64

search CycleProvider c register c
where c.serverInformation.cpu > 500

Decomposition results in the following atomic rules
(note, that RuleA is already shared):
search CycleProvider c register c (RuleA)

search ServerInformation s register s
where s.memory > 64 (RuleB1)

search RuleA c, RuleB1 s register c
where c.serverInformation = s (RuleC1)

search ServerInformation s register s
where s.cpu > 500 (RuleB2)

search RuleA c, RuleB2 s register c
where c.serverInformation = s (RuleC2)

Comparing RuleC1 and RuleC2 reveals that both
atomic rules have equal register and where parts and
that even the classes the variables are bound to are
equal.3 But the resources used to evaluate the rules
are different. To avoid individual evaluation of such
join rules, rule groups are introduced. A rule group
combines join rules which have an equal where part
and where the corresponding variables are bound to the
same class. All grouped join rules are evaluated at once
by combining their input data, evaluating the shared
where part, and splitting up the result afterwards. Fig-
ure 6 depicts this for the above example.

3Note that variable names need not be equal.
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3.3.4 Implementation Issues

We now describe the most important tables used by the
filter algorithm. For brevity reasons, we omit tables
that are not directly related to it, e.g., tables that store
which rules an LMR registered. A key concept to an
efficient filter implementation is the physical database
design. First, the filter tables are used as indexes to all
triggering rules affected by newly registered metadata.
Given some metadata the tables allow an efficient de-
termination of all triggering rules that have a where
part that evaluates to true given the new metadata.
Second, the tables themselves are created with indexes
supporting an efficient access on the database level.

Table AtomicRules4 stores all atomic rules (see Fig-
ure 7 for an example). There are no duplicates, i.e., no
rules having the same rule text but different rule ids.
RuleDependencies stores the global dependency graph.
A reference to the rule group of an atomic rule is stored
in its AtomicRules tuple and, for efficiency reasons, in
RuleDependencies, in tuples where the atomic rule is
the target. The rule groups themselves are stored in
RuleGroups.

Triggering rules are additionally inserted into one
of the tables FilterRulesOP or FilterRules depending
on the operator used in their where part. Our cur-
rent implementation supports comparisons with opera-
tors <, <=, >, and >= only on numerical constants. To
avoid the creation of an own FilterRulesOP table with
an appropriate type of the value attribute for all nu-
merical types, constants are stored as strings and re-
converted when joining the tables with the FilterData
table. Figure 8 shows an example extension of the Fil-
terRules/FilterRulesOP tables, based on the triggering
rules from Section 3.3.1.

4We use view(rule id, class) to refer to another atomic rule
(instead of, e.g., RuleA).

3.4 The Filter Algorithm: Matching Documents
and Rules

The filter algorithm is started after a new document
was registered and decomposed. It consists of two steps:
First, all triggering rules are determined that are af-
fected by the registration of new metadata. Subse-
quently, all join rules depending on the affected trig-
gering rules are evaluated incrementally, as defined by
the global dependency graph.

Determination of Affected Triggering Rules It
is crucial that a triggering rule refers to a single class.
Its where part is either empty or a comparison with
a constant. The former type of atomic rule matches
any newly registered resource which is an instance
of the class the rule refers to. For the latter type,
the rule’s predicate has to be evaluated based on the
atoms of the document. One matching atom is suffi-
cient for a triggering rule to be affected. Our proto-
type implementation starts with joining the table Fil-
terData with FilterRules and all FilterRulesOP tables
using a join predicate depending on the actual Filter-
Rules/FilterRulesOP table. The left table of Figure 9
shows the result of this step based on the previous ex-
amples. (The table ResultObjects always contains the
result of a filter step.)

Evaluation of Join Rules Now, all join rules de-
pending on affected triggering rules are evaluated. With
join rules complete incremental evaluation is not possi-
ble, so the results of atomic rules join rules depend on
are materialized. The evaluation consists of several iter-
ations. In each iteration all atomic rules depending on
the atomic rules currently stored in ResultObjects are
determined using the table RuleDependencies. Then,
the rule groups of these atomic rules are evaluated using
the resources currently stored in ResultObjects and—
if necessary—materialized data as input. The result
of this evaluation, i.e., the matching resources and the



AtomicRules
rule id text group

1 search ServerInformation s register s where s.memory > 64
2 search ServerInformation s register s where s.cpu > 500
3 search CycleProvider c register c

where c.serverHost contains ’uni-passau.de’
4 search view(1, ServerInformation) a, view(2, ServerInformation) b 1

register a where a = b
5 search view(4, ServerInformation) a, view(3, CycleProvider) c 2

register c where c.serverInformation = a

RuleDependencies
source target param group

1 4 1 1
2 4 2 1
4 5 1 2
3 5 2 2

RuleGroups
group text

1 search group(ServerInformation) a, group(ServerInformation) b register a where a = b
2 search group(ServerInformation) a, group(CycleProvider) c register c

where c.serverInformation = a

Figure 7. AtomicRules, RuleDependencies, and RuleGroups , based on Section 3.3.1

FilterRulesGT
rule id class property value

1 ServerInformation memory 64
2 ServerInformation cpu 500

FilterRulesCON
rule id class property value

3 CycleProvider serverHost uni-passau.de

Figure 8. Triggering Rules of Example 3.3.1

atomic rules they match, are again stored in ResultO-
bjects and used as input of the next iteration. Any
resources matching an end rule are saved for later. The
algorithm terminates if there are no more dependent
join rules. Termination is guaranteed because the de-
pendency graph is an acyclic, directed graph, so there is
a longest path from a triggering rule leaf to an end rule
node which has no dependent join rules. The length of
this path is the maximum number of iterations executed
by the filter algorithm. Figure 9 shows an example filter
run based on the tables presented in Section 3.3.4. The
filter terminates with resource doc.rdf#host as result.
After the filter terminated, all resources produced by
end rules are transmitted to the appropriate LMRs.

3.5 Updates and Deletions

Updated and deleted resources can be determined
by comparing the original RDF document with the up-
dated, re-registered one. A resource is updated if it is
contained in both documents, but at least one property
is changed, added, or removed. A resource is deleted if
it was contained in the original document but it is no
more in the updated one. If a complete document is
deleted all contained resources are deleted.

One execution of the MDV filter is not sufficient if
updates and deletions are allowed. If a resource is up-
dated three situations can be distinguished:

• The resource is no longer matched by a rule it
previously was. It must be removed from an
LMR’s cache if this was the only rule the resource

matched. If the resource still matches other rules
it must stay in the cache.

• The resource is matched by a rule it previously
was not. This situation is handled properly by the
filter.

• The resource still matches all rules it previously
had. All LMRs that cache this resource must up-
date their cache to contain the modified resource.

Furthermore, resources referencing an updated or
deleted resource must be considered. Assume the sub-
scription rule:

search CycleProvider c register c
where c.serverInformation.memory > 64

If a ServerInformation resource is updated, i.e.,
its memory property is set to 128, there can be
CycleProvider resources that now match this rule.
Whereas, if the ServerInformation resource’s memory
property is set to 32 or if the resource is deleted, there
can be cached CycleProvider resources that must now
be removed from the cache because they no longer
match the rule, but only, if there are no other rules
that the resource matches. Note that resources that
are cached because of strong references are removed by
the garbage collector, if necessary.

Our approach to solve all of this is to execute the fil-
ter multiple times, each time with different input data.
First, the filter is executed with the original version of
updated and deleted resources as input. The result is
a set of so-called candidate resources. Each of these
resources no longer matches at least one rule. We call



Initial Iteration
uri reference rule id
doc.rdf#info 1
doc.rdf#info 2
doc.rdf#host 3

Iteration 1
uri reference rule id
doc.rdf#info 4

Iteration 2
uri reference rule id
doc.rdf#host 5

Figure 9. Table ResultObjects for an Example Execution of the Filter

OID: search CycleProvider c register c where c = URI

COMP: search CycleProvider c register c where c.synthValue > INT

PATH: search CycleProvider c register c where c.serverInformation.memory = INT

JOIN: search CycleProvider c register c where c.serverHost contains ’uni-passau.de’ and

c.serverInformation.cpu = 600 and c.serverInformation.memory = INT

Figure 10. Benchmark Rule Types

them candidates because there can be other rules they
still match or new rules they now match (after an up-
date). Second, the modified metadata is written into
the database and the filter is executed a second time,
with the candidate resources as input. The result of the
execution is a set of wrong candidate resources, that is,
resources that must not be deleted. All true candidate
resources (i.e., the set of resources determined in the
first iteration excluding those obtained in the second
iteration) can be deleted from LMRs’ caches. Finally,
the filter is executed a third time, now with the modi-
fied metadata as input. The last execution corresponds
to the single filter execution that would suffice if no
updates and deletions were allowed.

Alternatives to executing the filter multiple times
are, e.g., to store for each resource a list of LMR’s
caching the resource. Or to use periodical cache in-
validation, based on a time-to-live approach, resulting
in resources dropping out of an LMR cache if they are
not reinserted periodically.

4 Performance Experiments

Now, we present some performance experiments con-
ducted using our prototype implementation of the filter
algorithm. The results are important to decide if the
filter should be started either when a new document is
registered or periodically, to process several documents
in one batch. All benchmarks were conducted on a Sun
Enterprise 450 with 4GB memory running Solaris 2.7
and using Sun’s Java JDK 1.2.2. As a backend we used
a major commercial RDBMS.

We registered RDF documents similar to the docu-
ment of Figure 1, each containing two resources, one of
class CycleProvider, one of class ServerInformation. As
rule base we used the rule types shown in Figure 10.
For a single measurement, documents and rules of type
OID, PATH, and JOIN were created in such a way that
the CycleProvider resource in a document was matched

by exactly one rule and that each rule matched exactly
one resource (stored in one document) of all newly reg-
istered resources. COMP rules and corresponding doc-
uments were created in a way that a CycleProvider re-
source was matched by a certain percentage of the rules
stored in the rule base, e.g., 10%. OID rules, which
register a single CycleProvider resource with a given
URI reference URI, and PATH rules, which register
all CycleProvider resources with a synthValue property
greater than the parameter INT, were both triggering
rules. No decomposition was necessary and the filter al-
gorithm did not need to evaluate any join rules. On the
other hand, PATH and JOIN rules contained accesses
to properties of referenced resources, so decomposition
was necessary and join rules were created. Therefore, to
evaluate them the complete filter algorithm was used.

We conducted the measurements with various batch
sizes, an increasing rule base size, and different rule
types. In a single measurement, we first created a rule
base consisting of rules of the same type. Then, we
registered a number of RDF documents and measured
the overall runtime of the filter algorithm to process
them. Depending on the rule type the algorithm termi-
nated after the evaluation of all triggering rules (OID,
COMP) or after the evaluation of all dependent join
rules (PATH, JOIN). The average registration time of
a single RDF document was calculated by dividing the
overall runtime by the batch size. From the filter’s
point of view, registering several small documents and
registering one large document is the same. So, these
measurements also illustrate the behaviour of the filter
algorithm regarding different document sizes.

Figures 11, 12, 13, and 14 show the dependency of the
average registration costs from the batch size, i.e., the
number of documents registered in one batch, for dif-
ferent rule types and rule base sizes.5 For OID, PATH,

5Minor variations of the graphs are a consequence of the tim-
ing based on Java.
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Figure 11. OID Rules
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Figure 12. PATH Rules
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Figure 13. COMP Rules (10% of Rule Base)
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Figure 14. JOIN Rules

and JOIN rules the behaviour is basically the same.
Registration of a small number of documents is more
expensive than the registration of a lot of documents in
one batch. From a certain batch size on (dependent on
the rule type) the average registration costs are nearly
constant. For COMP rules this is different; although
the registrations costs are again nearly constant from a
certain batch size on, registering few documents in one
batch is preferable.

For simple OID rules the rule base size does not in-
fluence the runtime of the algorithm as the curves for
10,000 and 100,000 are almost identical. This is dif-
ferent for PATH, JOIN, and COMP rules where the
registration costs do—as expected—depend on the rule
base size, as Figures 12, 13, and 14 show.

Figure 15 shows the influence of the percentage of
rules that match resources from the registered docu-
ments on the average registration costs. Not surpris-
ingly a higher rule percentage results in higher registra-
tion costs independent of the batch size.

5 Related Work

Metadata management systems, data repositories,
and catalogues are used in DBMSs since many years
to store metadata about tables, indexes, and other
data structures [30]. With the emergence of the In-
ternet new metadata management systems with new
challenges arose. UDDI [28] is a framework for stor-
ing and searching services provided by companies on
the Internet. Contrary to MDV UDDI defines a fixed
metadata schema and no automatic notification on data
changes is provided. WebSemantics [23] searches the
Internet for HTML pages that contain metadata about
data sources and integrates them into a catalogue. The
middleware system MOCHA [26] uses a (centralized)
metadata repository to store Java classes and documen-
tation about these classes in RDF. The Secure Service
Discovery Service [11] stores metadata about network
services in XML format. Lookup services like JINI [3],
UPnP [29], and SLP [16] allow the discovery of plug-
and-play services in networks but do not support large
quantities of data or a query language. Some parts of
our work are already described in [19].
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Figure 15. 10,000 COMP Rules - Varying Batch Sizes and Triggered Rule Base Percentage

Our filter algorithm uses triggering rules as an in-
dex to all subscription rules that are affected by new
metadata. A similar approach is used in the publish
& subscribe system Le Subscribe [25, 13]. It uses the
predicates of subscription queries as index, but within
the scope of a main memory algorithm. The Gryphon
system [1] creates a tree from queries composed of sim-
ple predicates where each node represents a comparison.
In [18] an Interval Binary Search Tree is introduced that
stores intervals and allows to efficiently find all intervals
that contain some given value. Whereas most publish
& subscribe systems assume a distinguished data for-
mat, the information dissemination system SIFT [31]
allows arbitrary (text) documents to be published. [2]
presents a filter algorithm that uses XQL queries to se-
lect specific XML documents from an incoming stream
of documents. To our knowledge none of these systems
allows references between the information that is pub-
lished, i.e., between different documents, as MDV does.

The NiagaraCQ [9] system evaluates queries contin-
uously against a database. Queries are decomposed
into partial queries, so that common partial queries
are evaluated only once. A similar concept is imple-
mented in OpenCQ [22] where queries are decomposed
into events connected by the operators of the original
query. Events are triggered by changes of the under-
lying data. Both systems and MDV can handle the
insertion, update, and deletion of data. [27] introduced
the concept of continuous queries but is restricted to
append-only databases.

The cache of an LMR can be viewed as a set of ma-
terialized views with the corresponding rules as view
definitions. [15, 4, 21] present some algorithms for up-
dating materialized views. In [17] different strategies to
update materialized views are investigated with respect
to their performance. There are also similarities with
semantic caching as described in [12].

6 Conclusion and Future Work

In this paper, we presented the architecture of MDV,
a distributed metadata management system. MDV has
a 3-tier architecture and supports caching and replica-
tion in the middle-tier so that information is stored near
the users that need it and queries can be evaluated lo-
cally. By adding servers to (or removing servers from)
the middle-tier as necessary our system can be adjusted
easily to varying workloads. In order to keep replicas
up-to-date and initiate the replication of new and rele-
vant information, MDV implements a scalable publish
& subscribe algorithm. We described this algorithm
in detail, showed how it can be implemented using a
standard relational database system, and presented the
results of performance experiments conducted using our
prototype implementation.

The work on the MDV system started about one
year ago; its integration into the ObjectGlobe system
was completed recently. For the future we are going
to focus on the support for web services and their dy-
namic composition. This includes the utilization of
XML as data format and XQuery as rule language—
particularly within the publish & subscribe algorithm—
as well as the support for such standards as UDDI [28]
and WSDL [10] for the description, administration, and
discovery of web services.
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